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Background 
New methods of materials synthesis and processing with various accelerated discovery strategies 
have led to huge libraries of functional materials systems. Examples include morphology-controlled 
nanoparticles as catalysts, nanoparticle superstructures as metamaterials, polymer films with 
multiscale porosity as separation membranes, to composite energy storage systems. These materials 
are spatiotemporally heterogeneous in composition, structure, and function, which call for three 
aspects of advancements in materials characterization. The first is the need for real-space, non-
ensemble averaged characterization methods which map the heterogeneity, at least in space, and if 
possible, over time to capture changes during the synthesis, application, and functioning of materials. 
The ever-improving toolbox of electron microscopy can meet this requirement by providing atomic to 
nanometer resolution mapping of the composition, structure, and phase of nanomaterials. Yet, 
depending on the specific materials systems, different factors still need to be considered in the 
imaging protocols, such as beam sensitivity, substrate effect, and in-situ stimulation. The second is 
the need for descriptors to describe heterogeneity. For example, low-dimensional descriptors of 
symmetry and lattice constants for crystalline solids do not apply for random, or mixed phase 
systems. Even when it comes to merely the shape (not composition or microstructure), in three 
dimensions (3D), irregular shapes can be hard to quantify. The third is the need for automated data 
analysis and reduction methods as high volumes of multi-modal experimental and simulation data 
are required to describe the heterogeneity and infer the structure−property relationship. Specific to 
electron microscopy studies, with the cutting-edge detectors, the data collected in one single in-situ 
experimental session can be 100,000 frames which are extremely laborious to be analyzed manually, 
let alone the introduction of human bias in the manual analysis process. Mapping properties such as 
composition and modulus at a similar resolution will only further increase the volume and dimension 
of the datasets.   
 
Here we will discuss our group’s efforts on developing different machine learning strategies to 
accommodate the data analysis requirements for two different electron microscopy methods, liquid-
phase transmission electron microscopy (TEM) and electron tomography, both involving taking series 
of images and thus referred to collectively as “electron videography”. Several materials applications 
will be discussed, including nanoparticle reaction, self-assembly, and polymer membranes.  
 
Methods 
We first introduced the method of U-Net based segmentation for liquid-phase TEM videos1. For 
liquid-phase TEM videos, they are usually of low signal-to-noise ratio, and thus make manual 
annotations difficult. To address this challenge, we devised a workflow to generate simulated liquid-
phase TEM videos, where the noise levels were captured as dependent on the dose rates to 
maximally mimic the practical experimental complications. These simulated liquid-phase TEM videos 
were used as training datasets for the U-Net, with well-defined ground truth, and thus can enable 
high fidelity and high throughout training of the U-Net, to be used for practical experimental liquid-
phase TEM videos.  
 
As to quantification of complex morphologies, we defined a mathematical fingerprint function2 that 
considers all the coordinates in the shape contours (two-dimensional or 3D) but stays as a one-
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dimensional function, which can be used as input for principal component analysis (PCA) and then for 
machine-learning based Gaussian mixture model for grouping of different morphologies and yield 
analysis. This method works both for TEM images of nanoparticles and electron tomographs of 
polymer membranes.  
 
Lastly, to facilitate high throughput electron tomography of complex materials3, we developed an 
unsupervised sinogram inpainting for nanoparticle electron tomography (UsiNet) to correct the 
missing wedge effects. UsiNet is the first sinogram inpainting method that can be realistically used 
for experimental electron tomography by circumventing the need for ground truth. 
 
Results 
For the U-Net based segmentation of nanoparticles in liquid-phase TEM videos, we were able to 
achieve high throughput analysis of the nanoparticle reaction kinetics, self-assembly dynamics, and 
internanoparticle potentials through the statistics accumulated from the liquid-phase TEM videos. 
For the application of fingerprint functions, they were useful to differentiate the desired tetrahedral 
nanoparticles from impurities, enabling yield analysis and the investigation of reaction mechanism. 
They were also capable of differentiating nanoparticles of different patterned polymer coatings, as 
well as membranes of four different shape categories, which aid the understanding of synthesis-
morphology-property relationship. As to the UsiNet method, we apply it to experimental 
tomographs, where >100 decahedral nanoparticles and vastly different byproduct nanoparticles are 
simultaneously reconstructed without missing wedge distortion. The reconstructed nanoparticles are 
sorted based on their 3D shapes to understand the growth mechanism. 
 
Conclusion 
We show collectively the usage of machine learning to liquid-phase TEM and electron tomography 
for understanding the dynamics and synthesis-morphology relationships of complex materials. The 
experimental and analysis workflow can extend to other in-situ studies of time-series and 
tomography studies of complex materials, as well as the potential integration of liquid-phase TEM 
with electron tomography to study 3D morphological evolution of materials important for 
applications in self-assembly, nanoparticle synthesis, polymer morphing, and energy storage and 
conversion.  
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Background incl. aims 
Scanning transmission electron microscopy (STEM) is commonly used to estimate the particle size 
distribution in heterogeneous catalysts. A problem with the conventional approach of manually 
measuring particle diameters in STEM images is that it is labor-intensive and disregards the actual 
particle structure, making particle size prediction with atomic precision impossible. To overcome 
these limitations, we propose a machine learning approach based on the CycleGAN architecture. The 
model learns to map between simulated and experimental images, and a subsequent network is 
trained to estimate the size of an imaged nanoparticle in terms of number of atoms. This technique is 
fully automatic and could form the basis for a modern characterization method when combined with 
automated data acquisition. As catalysts should ideally be studied under reaction conditions, we also 
explore the possibility of extending this workflow to gas-cell measurements.  
 
Methods 
Triggered by our recent experimental results, we have developed a structure generator which can 
generate realistic but random atomic models of Pt nanoparticles supported on ceria. These models 
have been used to generate a dataset of 3500 HAADF STEM multislice image simulations. A second 
dataset of high resolution HAADF STEM images of Pt nanoparticles supported on ceria was recorded 
on a probe-corrected Titan Themis operated at 300 keV. All experimental images were recorded 
under identical conditions. Images in both datasets are 128x128 with a pixel size in the range 10-50 
pm. The simulated and experimental dataset were used to train a CycleGAN to map between the two 
sets. We use 2 U-Net generators and 2 PatchGAN discriminators for the CycleGAN. With the trained 
CycleGAN, we then send the simulated dataset through the "simulation-to-experimental" generator, 
thus obtaining a new dataset of 3500 fake experimental images with a corresponding particle size 
ground truth. Another U-Net with a fully connected layer at the end to output a scalar size prediction 
was then trained on the fake experimental dataset. The trained size-estimator was applied to the 
experimental dataset and the particle size distribution was compared with that of the manual 
technique of measuring the particle diameters and assuming a hemispherical particle shape.  
  
Results 
We have successfully trained a cycle-consistent generative adversarial network to map between 
physical image simulations and experimental HR-STEM images of small Pt nanoparticles supported on 
cerium dioxide. Passing raw multislice simulated images through the network yields realistic-looking 
experimental images with noise profile matching that of the real experimental dataset. In the same 
way, passing an experimental image through the network can be compared to applying a potent 
denoising algorithm to the image.  
We apply our size estimation network to a set of 118 experimentally observed nanoparticles in a 
Pt/CeO2 catalyst to get the particle size distribution. Most predictions are reasonable and the particle 
size distribution obtained by the size-estimator network follows that of the manual hemisphere 
estimation technique. We find that the mean Pt particle size in the catalyst is 117 atoms with our 
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technique, and 154 with the hemisphere estimation technique. Typical fail-cases of our model 
includes images of particles larger than 500 atoms and particles oriented along a major zone axis. 
This is likely due to a lack of large particles in the simulated data, as well as a lack of particles in zone 
axis in the experimental set. This could be addressed by generating more data.   
 
Conclusion 
In conclusion, our machine learning approach establishes a connection between physical image 
simulations and experimental images, making it possible to train supervised machine learning 
techniques on realistic-looking data with a known atomic model ground truth. We have showcased 
this by developing a size-estimation network which proves to output reasonable size estimates when 
applied to experimental images. Combined with automated data acquisition, we envision techniques 
like this will lead to more comprehensive and accurate characterization of nanoparticle-based 
heterogeneous catalysts.  
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Background incl. aims 
Nanoparticles (NPs) have important use cases in catalysis, nanomedicine, photonics and plasmonics, 
and their properties are very dependent on elemental composition, structure, size, and shape. 
Reliable characterization methods are, therefore, very important in developing these technological 
areas. With X-ray-based scattering methods, large volumes of NPs can be probed, which gives 
volume-averaged ensemble characteristics. (Scanning) transmission electron microscopy ((S)TEM) on 
the other hand can give detailed information about the individual particles, but thousands of NPs 
must be analyzed to get statistically significant information about the sample. This calls for automatic 
NP characterization. Although numerous approaches exist, many require choosing the right 
combination of segmentation parameters or training machine learning algorithms. Here, we present 
NP-SAM [1], an easy-to-use segmentation and analysis software for NP characterization with 
advanced filtering based on NP characteristics and with the ability to run with varying degrees of 
human intervention. 
Methods 
NP-SAM is based on the Segment Anything Model (SAM) developed by Meta AI Research [2]. We 
have implemented SAM into NP-SAM and added extra functionalities such as a user-friendly mask 
filtering mechanism, overlap handling, core-shell analysis, and automatic generation of different 
types of useful output. The figure shows the general workflow of NP-SAM. Electron microscopy 
image(s) are first segmented with SAM, resulting in a mask for every segmented particle in different 
colors. Unlike most other segmentation methods, masks can overlap the same regions, making it 
possible to analyze neighboring NPs that overlap to a certain degree. An optional graphical user 
interface (GUI) allows undesired masks to be easily filtered based on the most relevant 
characteristics such as area, intensity, overlap, etc. For advanced users, even more advanced filtering 
is possible. Finally, NP-SAM produces different kinds of output: 1) Histograms and statistics of user-
chosen characteristics, 2) an overview .pdf file for quick sharing that contains the histograms and 
summarizes the segmentation and filtering parameters (for reproducibility), 3) a .csv file with the 
particle characteristics, e.g. area, perimeter, orientation, etc., 4) a flattened binary mask image of all 
the particles found, and 5) a mask for every individual particle enabling further advanced workflows 
of i.e. core-shell particles or hyperspectral data.  
Results 
We have tested NP-SAM on various electron microscopy images including high-angle annular dark-
field (HAADF) and bright-field TEM images. 24 HAADF images of PdCu NPs were analyzed, and 2352 
NPs were analyzed in about 11 minutes. The size distribution found with NP-SAM agrees with 
manually measured sizes. NP-SAM’s segmentation can be adjusted depending on the accuracy 
needed and the computer power available. Four segmentation model weights are available: Huge, 
large, base, and fast, with huge being the most accurate but also computationally heaviest and fast 
being lightweight and less accurate [3]. Segmenting the 24 HAADF images with the fast model 
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weights took 3 minutes, and 1925 NPs were found to give a size distribution that again resembles the 
manually measured one. 
The segmentation is based on a grid of points determining where the segmentation model searches 
for objects. For a HAADF image of very polydisperse Ag NPs and with many small NPs, a finer grid 
helped find more NPs. We have also implemented a feature called crop and enlarge that can help 
detect small NPs by dividing the image into four enlarged and segmented sections individually.  
One of the exciting features of NP-SAM is its ability to handle overlapping NPs. The overlap between 
masks is calculated since masks are allowed to occupy the same pixels. This overlap is an important 
filter parameter, and the user can freely choose the amount of overlap tolerated. This is shown with 
a HAADF image of AgCuIrPdPt NPs with complicated HAADF contrast. 
NP-SAMs sensitivity and ability to handle overlapping masks also enable advanced analysis of core-
shell NPs. With core-shell NPs being segmented as two masks, one being the entire particle and the 
other being the core within the particle, the core and shell can be analyzed individually, and their 
characteristics can be linked. For example, we can plot shell thickness as a function of core diameter. 
NP-SAM is available at our GitLab at https://gitlab.au.dk/disorder/np-sam with installation 
instructions, source code and user-friendly example notebooks. It is written in Python and can easily 
be installed using pip after installing PyTorch. A CUDA-compatible GPU speeds up computations 
significantly, and 8 GB of VRAM is recommended for the huge model weights. NP-SAM can also be 
run in a cloud-based Google Colab notebook where GPUs are often available. The segmented masks 
can then be downloaded and filtered locally using the GUI. Finally, we have also developed NP-SAM 
as a .exe file that runs NP-SAM through a user-friendly interface, not requiring any Python 
knowledge. 
Conclusion 
NP-SAM is a powerful tool for quick, user-friendly, and semi-automatic NP segmentation and 
analysis. Several images can be segmented in less than a minute per image, facilitating quick and 
reproducible analysis of thousands of NPs. In general, the size distributions found with NP-SAM 
resemble those found manually. Because NP-SAM can handle overlap, this allows for useful filtering 
and advanced analysis workflows such as the analysis of core-shell particles. 
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Background 
Functional properties of nanomaterials depend to a large extent on the underlying structure and 
chemical composition. An example are hetero-aggregates in which nanoparticles of two different 
materials are mixed. The mixture of titanium-dioxide (TiO2) and tungsten-trioxide (WO3) 
nanoparticles shows enhanced functionality if applied as a photo-catalyst compared to pure TiO2[1]. 
The performance of the material depends on the mixing. Best photo-catalytic activity is achieved in 
completely mixed hetero-aggregates[1].  
Improvement of functional properties requires a characterization of structure and mixing. In 
conventional STEM, two-dimensional (2D) projection images of the samples are acquired, 
information about the third dimension is lost. This drawback can be overcome by STEM tomography, 
where the three-dimensional (3D) structure is reconstructed from a series of projection images 
acquired using various projection directions. However, 3D measurements are expensive with respect 
to acquisition and evaluation time. Hence, the measurement of 3D-reconstruction can only be done 
for a limited number of hetero-aggregates. 
 
Methods 
TiO2-WO3 hetero-aggregates are generated in a double-flame spray pyrolysis setup. Precursors of 
the two materials are sprayed and combusted in the two separate flames. Nanoparticles form by 
nucleation and coagulation and aggregate to clusters of the same material. After a certain distance 
both flames intersect and clusters of both materials form hetero-contacts. The length of the 
intersection distance has an influence on the mixing. 
To obtain statistically relevant results, information on many hetero-aggregates has to be gathered. 
Positions of many nanoparticles have to be determined in 2D and 3D data. This can be challenging 
especially in regions where many particles overlap in crowded regions in 2D-projection data. In 
recent years, it was demonstrated that the application of artificial intelligence (i.e. convolutional 
neural networks, CNNs) outperforms a manual measurement or classical object detection 
algorithms[2,3]. The application of CNNs requires a training of the network first. To this end, many 
training images in which particle positions and material types are known are required. In the present 
contribution, we simulate realistic 2D-projection and 3D-reconstruction data of computer-generated 
virtual hetero-aggregates, in which particle positions and material types are known. We evaluate the 
trained CNNs using simulated data that has not been used during the training process and apply the 
networks to experimental 2D-projection and 3D-reconstruction data. For evaluations of 2D-
projection data we train a Mask R-CNN[4], for evaluation of 3D-reconstructions we train a StarDist-
3D network[5]. 
 
Results 
 An example evaluation is shown in the figure. Part (a) shows a STEM image of a TiO2-WO3 hetero-
aggregate. Part (b) shows particles detected by the Mask R-CNN, where TiO2 and WO3 are 
represented in red and green, respectively. The material discrimination shows a good agreement 
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with the energy dispersive X-ray spectroscopy (EDXS) map in (c). The nanoparticles as detected by 
the StarDist-3D network in the STEM tomography reconstruction is shown in (d). The material 
discrimination is in good agreement with the EDXS map in (c) again. 
To correlate structure and chemical composition with functional properties it is required to obtain 
quantitative information from 2D-projections and/or 3D-reconstructions. In the present contribution, 
we evaluate the number of particles, the WO3 mass fraction, particle size distributions and the 
fractal dimension, which is a measure for the hetero-aggregate structure. To quantify the mixing, we 
measure the heterogeneous coordination number, i.e. the average number of neighbour particles of 
a different material. A higher heterogeneous coordination number indicates better mixing. We show 
that for a measurement of mass fractions and for the characterization of mixing, the evaluation of 
less expensive 2D-projection data is sufficient, whereas for a measurement of the fractal dimension a 
3D-reconstruction is required.  
 
Conclusion 
Results of the present contribution will help for future characterization of nanoparticle hetero-
aggregates, if only the less expensive 2D-projection data is available. In these cases, results of this 
contribution will provide the possibility to relate 2D-projection evaluations with the 3D structure of 
the samples. 
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Scanning Transmission Electron Microscopy (STEM) is a well-established method for looking into the 
physical properties of complex nanostructures. However, a major drawback is that acquiring very 
high-resolution images may lead to negative effects such as radiolysis and knock-on damage [1]. It 
has been shown that by lowering the electron beam dose, sample damage is reduced, however this 
leads to a lower signal-to-noise ratio (SNR) reducing the final quality of the image [2]. 
Convolutional Neural Networks (CNN) are a type of feed-forward neural network that is used as a 
powerful tool for improving image SNR through methods such as denoising. Recently, aberration-
corrected STEM using CNNs has shown promising results, achieving resolutions below 0.1 nm. 
Specifically, improved SNR without using high-dose electron beams has been achieved by using CNNs 
trained on large datasets of microscopy data [3]. These methods have demonstrated the capability of 
CNNs to reduce damage to samples by improving image quality of low-dose STEM below 0.1 nm. 
Inspired by the successful use of deep learning-based convolution for noise reduction [4] outside of 
STEM, we propose the use of self-supervised deep CNNs trained on both real and synthetic high-dose 
data to improve the SNR of low-dose data. We aim to create a robust network that is portable to 
methods outside of denoising by using the high-dose data to retrain the network for a variety of 
conditions [5] (such as hysteresis, defocus, and image blur). 
This talk will present the results of utilizing self-supervised deep learning CNNs to improve the quality 
of low-dose data below 0.1 nm. We will also compare our proposed method to the STEM neural 
network autoencoder [3] and SDnDTI for Magnetic Resonance Imaging (MRI) [4] and discuss the 
potential of our method to improve upon on current methods within STEM as well as other domains 
by analyzing the SNR with the final image structural similarity (SSIM). 
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Background 
Phase change materials (PCM) are an emerging class of materials in which different phases of the 
same material may have different optical, electric, or magnetic properties and can be used as a phase 
change memory [1]. Phase-change memory materials, exemplified by (Ag, In)-doped Sb2Te (AIST) in 
this research, have several advantages, including high-speed read and write operations, non-
volatility, and a long lifespan [2]. PCMs are able to switch between amorphous and crystalline phases 
when subjected to heat or electrical current. However, the full understanding of PCMs depends 
heavily on accurate characterization, often through techniques such as scanning transmission 
electron microscopy (STEM). 
In the field of materials science and nanotechnology, the analysis of STEM diffraction patterns is 
crucial for understanding the structural characteristics of materials, especially in the context of PCMs. 
Accurate interpretation of diffraction patterns is essential for crystallographic analysis, phase 
identification, and grain visualization during an in-situ switching experiment. However, the analysis of 
STEM diffraction patterns in PCMs can be challenging due to the presence of noise and weak signals 
(Fig.1 left). 
Methods 
In this study, we present a solution to address the challenge of grain visualization in PCMs. We 
propose an unsupervised machine learning (ML) approach that employs an autoencoder to denoise 
STEM diffraction patterns. 
Autoencoders are neural network architectures that have the ability to learn in an unsupervised 
manner and that are able to represent complex data in a lower-dimensional, noise-reduced form [3]. 
By applying this technique, we enhance the quality of diffraction patterns, improving the signal-to-
noise ratio, which is highly beneficial for further analysis and visualization. 
Results 
Our results demonstrate a significant enhancement in the clustering and visualization [4] of 
crystalline grains within STEM diffraction patterns of phase change materials. By reducing noise and 
enhancing signal clarity, the unsupervised ML-based denoising technique allows for more precise 
discrimination between different crystallographic orientations and refines the identification of grain 
boundaries. 
Furthermore, we employed clustering based on the non-zero order peak position. Nnotably, this 
approach yielded significantly improved results for the denoised data (Fig. 2). 
Additionally, the proposed denoising enhances pattern-matching quality in commercial orientation 
mapping software (ACOM ASTAR), indicated by higher average index values and more visible 
structure in index maps, as illustrated in Fig. 3), facilitating precise analysis of crystallographic 
orientations and grain boundaries. 
Conclusion 
The proposed approach paves the way for a deeper understanding of phase change behavior, aiding 
in designing and optimizing PCMs for various applications, from thermal energy storage to non-
volatile memory technology. 
 As an unsupervised method, it does not require the laborious production of specific training data 
and, therefore, can serve as a universal tool for STEM diffraction pattern denoising and signal 
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enhancement. Last but not least, the proposed denoising technique is not limited to PCMs; therefore, 
our work can be understood as a general strategy for enhancing diffraction patterns. 
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Background  
High resolution scanning and transmission electron microscopy (S/TEM) enable the observation and 
exploration even of complex materials and interfaces down to the atomic level. It is often desired to 
uncover the atomic scale building blocks of materials, which is pivotal in understanding their physical 
nature and to tailor material properties. Identifying local features of the nanostructure of a material 
and deciphering latent attributes of them is of vital importance to discover new material 
phenomena. However, the increasing rate at which atomic resolution data is generated in modern 
electron microscopes makes human-based analysis tedious and renders it nearly impossible in the 
near future. This requires the development of automatic data analysis approaches to automatically 
extract meaningful physical information from local image features. 
 
Methods 
We present unsupervised and supervised machine learning approaches to classify phases and 
interfaces in atomic resolution microscopy images. An unsupervised image segmentation approach 
based on local symmetry descriptors to detect crystallographic features without prior knowledge of 
the underlying crystal structure is introduced [1]. The segmentation algorithm relies on self-similarity 
measures based on local symmetry operators that map the image into a symmetry score vector 
space. The dimensionality of the local descriptor is reduced by principal component analysis and the 
pattern labels are assigned by K-means clustering. We then show a supervised image classification 
framework that automatically labels crystal symmetries and orientations as well as interface regions 
in atomic resolution STEM images [2]. The underlying convolutional neural network is trained on 
simulated images of pristine crystal structures, while using the fast Fourier transform of local window 
regions as the descriptor. Typical noise sources, lattice distortions and rotations are taken into 
account by augmenting the training data. 
 
Results 
We show that the unsupervised segmentation approach can identify the different crystalline regions 
across a grain boundary in atomic resolution STEM images. By including rotational symmetry, it is 
even possible to segment the interface itself in an automatic fashion. We then apply the 
segmentation to atomic scale compositional faults in tetrahedrally complex phases and demonstrate 
its robustness on noisy data. In a final example, we show that the approach is even capable to 
segment image regions in an in situ atomic resolution video sequence. The supervised image 
classification is demonstrated on atomic resolution STEM images of grain boundaries in fcc, bcc and 
hcp systems of pure metals. By adopting a Bayesian neural network, the uncertainty estimates of the 
prediction are considered, which provides information even on structures not contained in the 
training data. To test the model, we first apply it to synthetic polycrystalline images and demonstrate 
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that amorphous regions can be indirectly identified by high uncertainty estimates. We then show the 
applicability to experimental STEM images of grain boundaries, where the mutual information is used 
to identify the interface regions automatically. The higher-dimensional neural network 
representations are explored via unsupervised learning and we find that it does not only provide 
information on the different crystal symmetries, but also the interface types. 
 
Conclusions 
We developed unsupervised and supervised machine learning approaches to automatically segment 
and classify image regions in atomic resolution images. It is demonstrated that the supervised 
segmentation is robust against noise in images and can be applied to image video sequences for in 
situ experimentation. The supervised learning provides quantitative classification of atomic 
resolution images of crystalline phases and is even capable to identify structural features not 
contained in the training data. 
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Background incl. aims 
The rapid advancement of neural networks (NN) has led to a diverse array of innovations, including 
autonomous driving, image and text generation. Notably, within image processing, object detection 
and classification has been significantly improving with a variety of NNs leading the way, particularly 
U-Net, Fast-RCNN, Mask-RCNN. A significant challenge while training a NN is the substantial volume 
of training data required to achieve satisfactory results. ImageNet or COCO are typical datasets, with 
14M and 200K labelled images (image and ground truth pairs), respectively, used to train NNs to 
detect everyday objects, people and animals within images. The Transmission Electron Microscope 
(TEM) field stands to benefit from machine learning image analysis techniques, which can reduce the 
time and effort of researchers analysing images, especially for particle size and morphology. 
Furthermore, automation of image analysis will lead to an increase in reproducibility when compared 
to manual analysis, however, there is a lack of publicly available data which is segmented and 
labelled appropriately for such applications. Here we present an alternative approach using synthetic 
data as a method for overcoming the lack of segmented and labelled data, which differs from 
simulated data and is a pictorial representation rather than a specifically generated simulation of a 
TEM image and use Mask-RCNN for instance segmentation, a form of image segmentation that 
detects individual objects in an image. The application shown here is for nanoparticle analysis. The 
principles can be generalised to all image data produced in a transmission or scanning electron 
microscopes.    
Methods  
Our research introduces an innovative approach to generating synthetic images for training machine 
learning algorithms in nanoparticle detection and classification. Unlike traditional simulation 
methods (multislice, Bloch waves), our method utilises Python packages to generate images, 
bypassing the need for costly computing resources. We illustrate this approach through two distinct 
examples: the creation of polylatex spheres and silica particles on holey carbon substrates with ultra-
thin continuous carbon layers and expand to gold nanoparticles. By randomising various parameters 
such as magnification, particle size, illumination, and contrast, we generate synthetic data for 
training an instance segmentation machine learning algorithm.  
Specifically, we employ a Mask-RCNN model pretrained on the COCO dataset and refine it using our 
synthetic transmission electron microscopy (TEM) images, a technique known as transfer learning. 
This approach significantly improves the model's performance by leveraging knowledge from a 
broader dataset for a specialised task. Subsequently, we apply the trained model to segment 
experimental TEM images sourced from Certified Reference Materials (CRMs), which are industry 
standards used for analytical validation and microscope calibration within the PAT4Nano 
standardization project. To enhance the algorithm's segmentation accuracy and reduce false 
positives, we explore augmenting the training data with synthetic particles overlaid on experimental 
TEM grid substrate images. The efficacy of this approach is demonstrated through comparative 
analysis and visualisation.  
Expanding our data generation efforts, we simulate various scenarios including continuous carbon 
structures and diverse shapes of gold nanoparticles. Additionally, we adjust intensity values to fall 
within the 1-99 percentile range, further enriching the dataset. This augmented dataset is utilised to 
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train a secondary Mask-RCNN model, which is then deployed for predicting segmentation of 
experimental images. 
Results  
Our evaluation of the models was conducted separately, utilising the Mean Average Precision (mAP) 
metrics. The Average Precision (AP) is quantified as the area under the precision-recall curve (PR 
curve), where precision denotes the ratio of true positive predictions to all predictions, and recall 
represents the proportion of correct positive predictions to all true positive cases. The mAP 
aggregates all AP values across various classes or categories. The initial model, trained on the 
polylatex/silica dataset with approximately 500 synthetic images, achieved a mAP of 0.40 when 
tasked with predicting 90 experimental images. Subsequent augmentation of the training dataset 
with an additional 500 synthetic images of particles overlaid on experimental backgrounds resulted in 
a notable improvement, raising the mAP to 0.80 for the same set of 90 experimental images. In 
parallel, the second model, trained on the gold nanoparticles dataset, attained a mAP of 0.84 when 
predicting 19 experimental images. Both model predictions were subjected to a minimum detection 
confidence threshold of 0.9. The graphics section visually depict the predictions generated by models 
1 and 2, respectively, providing tangible insights into their performance.  
Conclusion  
Our research demonstrates the successful training of an instance segmentation algorithm using 
synthetic data generation, with notable enhancements are achieved by incorporating experimental 
backgrounds into the training process. Additionally, our findings illustrate the adaptability of the 
algorithm across diverse datasets characterised by varied backgrounds and particle shapes. Moving 
forward, our focus will centre on refining particle edge detections to achieve pixelwise accuracy and 
advancing nanoparticle measurement techniques. Furthermore, we aim to develop an open-source, 
user-friendly interface for the generation of synthetic data adaptable to a wide variety of 
transmission electron microscopy (TEM) data. This interface will include a built-in trainable model 
which can be tuned and refined with user generated synthetic data, facilitating broader accessibility 
to automated image segmentation for researchers with electron microscope data.  
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Background 
As a powerful instrumentation tool, scanning electron microscopy (SEM) has been increasingly used 
to perform analysis on a wide range of minerals, metals, biological specimens, nanostructured 
materials, polymers, composites, and electronic components [1].  By integrating hyperspectral 
imaging techniques into SEM, secondary electron hyperspectral imaging (SEHI) technology is able to 
offer detailed and comprehensive spatial-spectral information of the materials, making it versatile for 
analysing chemical properties and surface morphology at micro- to nano-scale [2]. 
However, effectively visualizing spatial-spectral information can still be challenging, especially when 
changes in spectra are subtle due to spectral mixing or occur only in a very small percentage of the 
area analysed. To address this problem, we propose a novel analytical workflow for SEHI data using 
unsupervised learning, which can automatically identify chemical bonds or elements present in the 
imaged materials and additionally segment the materials surfaces into corresponding chemical 
groups. 
Methods 
The proposed automated analytical workflow includes the following steps: 
(1) Microscopy image data is processed by traversing the whole field of view of the image, through 
small block-based or pixel-wise methods. For block-based processing, the entire image is divided into 
smaller, predetermined units (e.g., blocks of 3*3 pixels).  
(2) For each small block, the peaks in the corresponding spectral curve, also known as spectral peaks, 
are identified and gathered. This allows for the collection of the overall distribution of all spectral 
peaks across the image.  
(3) The distribution of spectral peaks is learned by using unsupervised clustering approaches. In this 
work, the Gaussian mixture model (GMM) approach is adopted to perform probabilistic clustering.  
The centroid of each GMM component reflects the location of the corresponding spectral peak, 
which can be used to deduce the associated chemical bonds or elements in the material sample.  
(4) Image blocks that fall into the same cluster are then identified. Accordingly, the spectra of these 
image blocks from the same cluster are extracted. These extracted spectral signatures then act as 
reference spectra, or like "endmembers" in spectral unmixing processes.  
(5) By evaluating spectral similarity using spectral angle mapper (SAM), the image regions, sharing 
similar spectral properties with these reference spectra obtained in (4), are distinguished.  
Results 
We implemented this framework into analysing a complex metal alloy (palladium & silver, PdAg) and 
carbon film, imaged using a Helios Nanolab G3 UC microscope [3]. Firstly, the raw hyperspectral 
image slices are registered through a template-matching algorithm [4]. By dividing the entire image 
into smaller blocks and identifying the localized spectral peaks from these blocks, we obtain the 
distribution of spectral peaks. To figure out the predominant spectral peaks within this distribution, 
unsupervised clustering by the GMM is applied. As shown in Fig.1, the GMM outcomes reveal 5 
components with peak locations at 0.83, 1.98, 3.57, 4.75, and 5.60 eV, respectively. According to the 
literature, the spectral peaks at 0.83 and 1.98 eV are likely attributed to metals Pd and Ag [3]. The 
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peaks observed in 3-6 eV range are thought to be linked to the contributions from sp²-like, a-CH and 
sp³-like carbon bond types. Intuitively, image blocks that fall into the same cluster, primarily 
contribute to a particular spectral peak. Thus, the reference spectra, or endmembers-like spectra, 
can be extracted from the image blocks belonging to the same cluster. The SAM is utilized to assess 
spectral similarity against these reference spectra for image segmentation.  
Conclusion 
Conventional and manual microscopy data analysis methods, due to their limitations in processing 
efficiency and accuracy, could hinder the applications of SEHI in advanced characterization of 
materials. Machine learning-based approaches, especially unsupervised learning, offer promising 
automated analytical solutions for tackling these challenges effectively. The automated analytical 
workflow proposed here well identifies the chemical bonds and elements present in the imaged 
materials. The unsupervised clustering method, GMM, perform well in modelling the overall 
distribution of all spectral peaks and uncovering the chemical bonding types. According to the 
clustering outcomes, the materials surfaces can then be segmented into the corresponding chemical 
groups. This novel workflow can facilitate comprehensive cheminformatics analysis of materials, 
particularly complex carbon material systems. 
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Background 
Metabolic processes in plants involving transport of water, metabolic gasses, and nutrients are 
controlled by the three-dimensional (3D) microscopic morphology of the plant tissues. However, 
imaging and quantifying this microstructure, including the spatial layout of cells, pores (intercellular 
spaces) and vascular bundles, is a challenging task.  
X-ray micro-computed tomography (micro-CT) has been proposed for 3D plant tissue imaging. This 
advanced imaging technique requires little preparation and resolves easily pore and cell phases due 
to differences in attenuation. X-ray micro-CT also covers a large field of view compared to other 
microscopy techniques, thus rendering more representative volumes of interest.  
To quantify plant tissue morphology, the tomographic images require extensive image processing, 
which can become time-consuming and labor-intensive. Cell segmentation in particular is a difficult 
task because of low contrast in X-ray attenuation at cell-to-cell interfaces.  
Deep learning (DL) is increasingly being used for complex image processing tasks in various fields. DL 
models can be trained to predict semantic labels where each pixel or voxel is assigned to a class label. 
Cell segmentation, however, is an instance segmentation task, where pixels or voxels of the same 
class are assigned to separate instances.  
This work aims to speed up and improve 3D plant tissue microstructure characterization using X-ray 
micro-CT imaging and DL-based models for panoptic segmentation, which combines semantic and 
instance segmentation tasks. The method was developed and validated for pome fruit tissue 
samples. 
Methods 
An X-ray micro-CT dataset was collected to develop panoptic segmentation models. This dataset 
consisted of pairs of conventional and contrast-enhanced X-ray micro-CT images of the same tissue 
sample. Pear and apple fruit were sampled at three different radial positions. Different cultivars were 
compared. X-ray projections were acquired using a UniTom HR micro-CT system (Tescan XRE nv, 
Ghent, Belgium) with voxel resolution of 3 µm for apple and 2.5 µm for pear. For the contrast-
enhanced scan after the conventional scan, the tissue sample was carefully unwrapped and 
incubated in a 10% (w/v) cesium iodide solution for 1 (all pear cultivars and ‘Jonagold’) or 2 h 
(‘Braeburn’ and ‘Kizuri’) while agitating every 15 min.  
After reconstruction, the corresponding 3D images were registered. From the conventional scan, the 
binary of the cell matrix and pore space were extracted using Otsu’s thresholding. From the contrast-
enhanced scan, the individual cell labels were extracted using a semi-automated cell segmentation 
workflow; the vasculature and stone cells were semi-manually segmented if present. Labeled images 
were used as ground truth for training the DL algorithm. Data was split into test, training and 
validation sets making sure datasets were from different fruit. Following the state-of-the art method 
for cell segmentation, the marker-based watershed algorithm was applied to the binary of the cell 
matrix as benchmark. As additional benchmark, an instance segmentation model trained on 2D data 
and enabling 3D prediction by averaging the 2D predictions in all orientations was included, to 
evaluate the cell segmentation accuracy. 
Results  
The panoptic segmentation model was able to segment following semantic labels: pore spaces, cell 
matrix, vascular bundles and clusters of stone cells (brachysclereids, only in pear tissue) and at the 
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same time to predict intermediate representations of the instance labels, i.e. the cells, that allow cell 
reconstruction in a post-processing step. Thereto, it exploited the 3D extended version of the public 
domain Cellpose instance segmentation model, which in this study was adapted to a panoptic model 
after optimizing instance segmentation performance. The original instance segmentation model uses 
a 3D U-Net architecture to predict gradient map representations of cell instances. Following changes 
to this network architecture improved the instance segmentation accuracy: addition of long skip 
connections with direct summation, replacement of the standard building blocks with residual blocks 
whereby two consecutive residual blocks were implemented per layer, resulting in double the depth 
of the original 3D U-Net architecture, and retrieval of a style vector using global average pooling on 
the convolutional maps of the smallest dimension. The 3D model achieved Aggregated Jaccard 
Indices of 0.788 ± 0.061 and 0.889 ± 0.030 for pear and apple tissue, respectively, compared to 0.732 
± 0.075 and 0.861 ± 0.028 for the 2D model and 0.631 ± 0.134 and 0.715 ± 0.034 for the watershed-
based benchmark. 
The 2D instance segmentation model was able to recognize vascular bundles and stone cell clusters 
and exclude them from the volume-of-interest. This demonstrated the potential to expand to 
panoptic segmentation combining semantic and instance segmentation tasks for the 3D model. 
However, prediction of the semantic labels was difficult as the dataset was highly imbalanced. From 
the 810 training samples, 308 contain vasculature and/or stone cell clusters and if these labels were 
present, the occurrence based on the amount of voxels was much lower compared to the cell matrix 
and pore space labels. Focal loss was the most appropriate loss functions that learned the model to 
focus on the vascular bundles and stone cell clusters.  
Conclusion 
The 3D model succeeded in improving the cell segmentation accuracy over the 2D model and 
watershed-based benchmark. Cell segmentation remains more difficult for dense pear tissue 
compared to apple, but the 3D model showed greater improvement for pear tissue segmentation, 
reducing the difference between tissue types. The prediction of semantic labels is hindered by the 
large imbalance in the data. Therefore, further training wit data augmentation techniques have yet to 
confirm how much the focal loss can improve segmentation accuracy of vascular bundles and stone 
cells. 
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Processing the vast amounts of data generated by STEM spectroscopy techniques, particularly 
hyperspectral data obtained through energy dispersive X-ray spectroscopy (EDXS), poses significant 
computational challenges. Current approaches based on machine learning algorithms of the family of 
multivariate statistical analysis often struggle with the monolithic analysis of very large datasets that 
exceed available computer memory. A second challenge with very large datasets is that minority 
phases might be discarded with the noise if the dataset is treated in one block. Our research 
addresses these challenges by extending a monolithic, in-house, non-negative matrix factorisation 
(NMF) method specifically tailored for model-based treatment of EDXS data[1], called ESpM-NMF – 
that enables meaningful interpretation of the resulting spectral and spatial components – into a new 
tool where the dataset can be treated blockwise before a global reconstruction is performed. 
First, we split the hyperspectral data into spatial blocks, the optimal size of which is based on the 
spatial structure of the initial dataset. Next, we perform principal component analysis (PCA) utilising 
singular value decomposition (SVD) to identify the number of relevant components within each 
block, by visual inspection of the SVD output. Subsequently, an initial NMF decomposition is 
performed with our ESpM-NMF algorithm on a blockwise basis, to estimate spectral components. In 
the following post-processing stage, we integrate a priori information concerning elemental 
composition, phase details, and chemical compound identification. The resultant spectral 
components are correlated using a custom spectral clustering algorithm to identify shared features 
across the different data blocks. With this step, we are able to reduce the number of spectral 
components to the exact total number of components to be expected for the whole dataset. Finally, 
we use the definitive spectral components relevant to the entire dataset to derive the corresponding 
spatial components capable of monolithically representing the input dataset by solving the least 
squares problem in a blockwise manner and concatenating the resulting blocks. 
For the purpose of testing our algorithm, we generated a synthetic dataset with 5 spatially-separated 
phases using a previously-developed EDXS dataset simulation algorithm[2]. We use four spherical 
particles sitting on a silicon substrate. The substrate corresponds to a thickness of 10 nm, the sphere 
sizes are 10, 10, 20 and 50 nm for W, Pd, ScVO₄ and SrTiO₃, respectively. As shown by the comparison 
of monolithic to blockwise dataset decomposition in the figure below, our methodology shows clear 
improvements for processing large hyperspectral EDXS datasets. Through the integration of prior 
knowledge and the utilisation of blockwise NMF-based decomposition, we attain enhanced accuracy 
in separating spectral and spatial components, while also enabling the identification of minority 
phases that are not adequately detected in the monolithic approach. Leveraging spectral clustering 
aids in identifying shared spectral features across blocks with remarkable noise resilience, thereby 
improving results consistency, reliability and interpretability. Crucially, our approach enables efficient 
out-of-core processing, surmounting memory constraints and enabling the analysis of datasets 
previously deemed impractical without access to high-performance computing clusters.  
In summary, we introduce a new tool for out-of-core hyperspectral data processing. Our NMF-based 
methodology not only overcomes memory constraints but also enables the detection of minority 
phases that are not successfully retrieved using monolithic processing. This advancement opens 
avenues for more comprehensive and detailed analyses in STEM spectroscopy, paving the way for 
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deeper insights into material structures and compositions. Progress is under way to publish the tool 
in an open-source format. 
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Background incl. aims  
 
The standard method for detecting macromolecules in cryo-electron tomography (cryo-ET) images is 
template matching (TM), which suffers from high computational complexity and difficulties in 
identifying particles with similar structures. In TM, one uses template density maps of a specific 
macromolecular particle and computes the cross-correlation score at every voxel across the whole 
tomogram. The highest-ranked cross-correlation scores correspond to possible particle locations. In 
addition to the particle location, one also obtains an estimation of the particle orientation. As a final 
step, sub-volumes are extracted at those locations which can be used in turn for other tasks like 
classification and segmentation. 
 
Recently, the investigation of crowded cell environments using cryo-ET has been attempted with 
deep learning (DL) methods. Models like DeepFinder [1] improve particle picking by being much 
faster while at the same time providing a reasonable accuracy. Prediction of the particle orientation 
using DL methods, however, has, to the best of our knowledge, not yet been achieved. This, we 
believe, is mainly because learning based on representations like Euler angles or quaternions fails 
due to discontinuities of the representation space [2].  
 
Here, we investigate DL-based particle orientation estimation using a continuous representation with 
six degrees of freedom (6DoF) that empowers neural networks for the optimal estimation. Input to 
the neural network is a 3D image patch containing the particle. Since for experimental data, usually 
no ground truth is available, we generate test data using the PolNet software that was recently 
published [3]. We evaluate the accuracy of the orientation estimation using an end-to-end model on 
this test data. Our promising results suggest that particle orientation using DL methods is indeed 
feasible.  
 
Methods  
 
Different rotation representations may be used to train a machine learning model for orientation 
estimation. Inspired by the work of Zhou et al. [2] , we address the problem of orientation estimation 
as a regression problem. We use M =[a1, …, an] and SO(n) to denote a rotation matrix and the space 
of n-dimensional rotations, respectively, and ai represents a column vector. In consequence, having a 
set of 3D rotations, one can define the original space X=SO(3). Zhou et al. [2] showed that 
representations for 3D rotations are discontinuous in four or lower dimensions; hence, 
representation spaces for rotations based on Euler angles and quaternions are discontinuous.  
 
Let R and X be the representation space and the original space of rotations; then the neural network 
should predict an intermediary representation in R that can be mapped into the original space X. In 
other words, we are looking for a representation (f, g) such that f:R→X maps from the representation 
space to the original space and g:X→R maps back to R, preserving the continuity. Figure 1 illustrates 
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these definitions. However, the problem is that the limit of g is undefined for zero rotation, i.e. limit 
of g in one direction gives 0 and in the other 2π.   
 
One possible solution is to employ identity mapping. Although this guarantees that the network 
output is back in SO(3), it results in matrices of size 3 × 3 which can be computationally exhaustive 
due to orthogonalization. As a result, we perform the orthogonalization in the representation space. 
Having the original space X=SO(3), a representation space R=R³×²∖D, and a rotation matrix M, the 
mapping g is simply defined as dropping the last column of the rotation matrix, resulting in  
[a1, a2], as suggested by Zhou et al. Here, the set D represents that part of the space that f cannot 
map to SO(3) [2].  
 
In addition to these challenges, designing a network structure that can reduce the computational 
cost while accurately estimating the orientation is a profound task. One such structure is a multi-
layer perceptron (MLP). We use a four-layer fully connected network with 32 nodes per layer and a 
regression layer with tanh activation function. The number of output nodes in the regression layer 
equals the dimension of the orientation representation, i.e. 3, 4, and 6 for Euler angles, quaternions, 
and 6DoF, respectively. 
 
Results   
 
We performed experiments on a synthetic dataset generated by PolNet [3] that for uniform random 
sampling of the rotations uses the Algorithm S2 in [4]. We generated 150 tomograms of resolution 
10A° containing the ribosomal complex (4v4r) and Thermoplasma acidophilum 20S proteasome 
(3j9i). We extracted centred patches of size 40³ for all 4v4r particles, leading to 26703 samples. 130 
tomograms (23128 samples) were used for training and validation, and 20 tomograms (3575 
samples) for testing. Note that the synthesized tomograms contain the missing-wedge artifact and 
noise.  
 
We trained our network for 50 epochs using Adam optimization, batch size 32, learning rate 0.0001, 
and patch size of 40³. We used Huber loss to calculate differences between ground truth and 
predicted orientation representation. Our experimental results suggest that the continuous 
representation performs much better in practice. Figure 2, left, shows the ground truth and 
predicted orientations on a test tomogram for the 6DoF representation. Green and red colors 
represent ground truth and prediction, respectively. Our model predicted 81% of the test samples 
correctly using the Crowther criterion [5] with an angle difference threshold of 20 degrees. Visual 
analysis shows that most incorrect predictions occur in regions where the particles form a cluster. 
While training time was about 1 hour, inference time was only approximately 25 seconds on a single 
GPU. We achieved an R2 score of 0.96 on training data and 0.87 on test data for the 6DoF 
representation. These values downgrade to 0.76, -0.07 on training and -0.47, -0.07 on test data for 
the quaternion and Euler representations, respectively. Figure 2, right, shows a histogram chart of 
the angle differences for all three representations.  
 
Conclusion  
 
We studied the use of MLP to estimate macromolecule orientation using various representation 
spaces, namely Euler angles, quaternions, and a 6DoF-continuous. The continuous representation 
space shows a huge advantage over the others. Our future work includes developing more complex 
models to perform multiple downstream tasks along rotation estimation.  
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The field of electron microscopy (EM) has long been constrained by the complexity of its operating 
systems, which require extensive training and expertise to navigate. Traditional graphical user 
interfaces (GUIs) provide a layer of abstraction that, while useful, can distance the operator from the 
most efficient and intuitive interaction with the instrument. This study introduces the EM CoPilot, an 
innovative application of Large Language Models (LLMs) [1-4]. designed to transform the operation 
of electron microscopes by enabling control through intuitive language commands. This paradigm 
shift signifies a new era in microscopy, where accessibility, efficiency, and user-friendliness are 
paramount. 
Methodology involved the development of an LLM capable of understanding and translating natural 
language commands into specific function calls for electron microscopes. The system supports a wide 
range of commands. The code was integrated into an EM control system, equipped with voice and 
text recognition capabilities, supporting multiple languages to cater to a global user base. 
Key findings demonstrate that the EM CoPilot significantly reduces the learning curve for new users, 
while enhancing the operational efficiency and flexibility for seasoned experts. Users can execute 
complex sequences of operations with simple commands, automate routine tasks, and receive 
operational guidance, thereby reducing operational errors and increasing throughput. Furthermore, 
the system's ability to handle complex sequence function calls and integrate basic classical image 
processing tasks directly through language commands opens new avenues for advanced microscopy 
techniques. 
The implications of this study are profound, signaling a move towards more user-centric approaches 
in the design and operation of scientific instruments. By bridging the gap between advanced 
technology and user interface design, the EM CoPilot not only democratizes access to high-level 
electron microscopy but also sets a precedent for the application of LLMs in scientific 
instrumentation. The integration of LLMs into EM operation paves the way for future innovations in 
instrument control, potentially revolutionizing how scientific research is conducted across multiple 
disciplines. 
This abstract encapsulates the essence of the EM CoPilot study, highlighting its innovative approach, 
methodology, key findings, and the broader implications for the field of electron microscopy and 
beyond. 
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Background 
In recent years, nanomaterials have seen widespread usage in fields as diverse as biomedicines, 
energy storage and catalysis due to their unique properties. The efficacy of nanomaterials for an 
application are significantly dependent on their physical and chemical properties. Electron 
tomography is an invaluable technique, which allows researchers to determine these properties in 3D 
by reconstructing a series of 2D projections collected at various angles (tilt series).1 However, the 3D 
spatial properties alone are insufficient to fully characterize nanomaterials and their application. In 
real world conditions, material properties are rarely static and they change as a result of 
environmental conditions such as pressure, heat and chemical reactions.2,3 To fully characterize the 
dynamic behaviour of materials, researchers must move towards 3D volume + time characterizations. 
Unfortunately, collecting a single tilt series for electron tomography can take about an hour, resulting 
in loss of temporal information and motion blurring artefacts in the resulting reconstructed volume. 
Herein, we propose a novel reconstruction method that uses a deep image prior self-supervised 
neural network (DIP-NN)4 to determine the 3D volume as a function of time. This allows researchers 
to collect a series of 3D volumes with a temporal resolution of less than a minute.  
 
Methods   
To reconstruct a volume time series, 1D slices of the tilt series were used as an input to the DIP-NN. 
Each slice was mapped to a depth and time coordinate. A 2D orthoslice of the reconstructed volume-
time series was predicted for the specified coordinates. To train the network, the orthoslice was 
forward projected and compared back to the original tilt series. During the reconstruction, the 
volume-time series is reconstructed slice-by-slice, until the full volume-time series is acquired (Figure 
1). Hence, for every 2D image collected in the tilt series a full 3D volume was acquired at the same 
time of acquisition. This methodology was used to reconstruct simulated nanoparticles with 
morphological and compositional changes and experimental Au/Ag nanoparticles that were subject 
to changes in both shape and alloying as a result of in situ heating during electron tomography. 
 
Results 
In both the simulated and experimental cases, a significant improvement was observed in temporal 
resolution compared to conventional tomography. In the simulated case, a set of 100 images in the 
tilt series was used to reconstruct a set of 100 volumes, where only one would be acquired using 
conventional electron tomography. In the experimental case, we were able to obtain a frame rate of 
approximately 1 volume per minute, far outpacing even fast tomography. In both experimental and 
simulated cases, the reconstruction quality, determined based on the signal-to-noise ratio and the 
structural similarity index, were comparable to conventional tomography. 
 
Conclusions 
Herein, a machine learning method is presented which allows the reconstruction of a series of 3D 
volumes with a temporal resolution of less than a minute. Unlike supervised machine learning 
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approaches, this method can be trained solely from the acquired tilt series. This method was 
validated with both simulated and experiment studies on Au and Ag nanoparticles during heating.  
 
Figure 1. DIP-NN algorithm takes in 1D slices of the tilt series using the coordinates for the depth (z) 
and time (t) to predict a 2D orthoslice of the reconstruction at the same coordinates. For training, 
this 2D orthoslice is forward projected and compared back to the tilt series. To reconstruct a full 
volume time series, the 2D orthoslices are stacked slice by slice for every z and t value. 

 
Keywords: 

Tomography, Deep Image Prior, Dynamics 

Reference: 

(1)  Weyland, M. Electron Tomography of Catalysts. Top. Catal. 2002, 21 (4), 175–183. 
(2)  Mychinko, M.; Skorikov, A.; Albrecht, W.; Sánchez-Iglesias, A.; Zhuo, X.; Kumar, V.; Liz-Marzán, 
L. M.; Bals, S. The Influence of Size, Shape, and Twin Boundaries on Heat-Induced Alloying in 
Individual Au@Ag Core–Shell Nanoparticles. Small 2021, 17 (34), 2102348. 
https://doi.org/https://doi.org/10.1002/smll.202102348. 
(3)  Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-
Marzán, L. M.; Bals, S. 3D Characterization of Heat-Induced Morphological Changes of Au Nanostars 
by Fast: In Situ Electron Tomography. Nanoscale 2018, 10 (48), 22792–22801. 
https://doi.org/10.1039/c8nr08376b. 
(4)  Yoo, J.; Jin, K. H.; Gupta, H.; Yerly, J.; Stuber, M.; Unser, M. Time-Dependent Deep Image Prior 
for Dynamic MRI. IEEE Trans. Med. Imaging 2021, 40 (12), 3337–3348. 
https://doi.org/10.1109/TMI.2021.3084288. 
 
 
  



IM-10 - Machine Learning-based processing and Analysis of Microscopy Data 

 
628 

Self-supervised deep learning method for in-cell cryo-electron tomography 
Frosina Stojanovska1,2, Anna Kreshuk3, Julia Mahamid1,3, Judith Zaugg1,4 
1Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 
Germany, 2Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, 
Germany, 3Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 
Germany, 4Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany 

IM-10 (2), Lecture Theater 3, august 29, 2024, 14:00 - 16:00 

Cryo-electron tomography (cryo-ET) is a powerful technique for visualizing and analyzing 
macromolecular complexes within their native cellular context. However, cryo-ET analysis is hindered 
by the low signal-to-noise ratio (SNR) inherent to cryo-ET data and the lack of ground truth data, 
which pose significant challenges for supervised automated mining of molecular patterns within the 
cellular environment. As a result, the accurate localization and identification of macromolecular 
structures of interest, particularly those that are small and less abundant, continue to be a major 
challenge in the analysis of cryo-ET data. 
To address these challenges, we developed a new self-supervised deep learning approach tailored for 
the dense (voxel-wise) representation of in-cell cryo-ET data. This method generates high-resolution 
representations of cellular information at the voxel level, facilitating precise segmentation of 
structural details within tomograms, including particles (globular macromolecular complexes) and 
filaments (for example, DNA). To evaluate the performance of the model, we created an extensive 
simulated dataset (Purnell, 2023) that closely mimics a crowded cellular environment, featuring 
membranes, actin and microtubule filaments, and over 100 PDB protein structure entries of varying 
sizes. Additionally, we enhanced the dataset by simulating the presence of DNA structures.  
Experimental results from the simulated data from the 2021 SHREC competition (Gubins, 2020) and 
our new simulated crowded dataset demonstrate the efficiency of our method in extracting detailed 
information about membranes, actin, microtubules, particles, and filaments on a voxel level. To 
achieve further separation of different types of particles, we conducted an experiment in which we 
extracted subtomograms for each detected particle and generated embedding representations for 
every subtomogram. This approach resulted in a new representation space, where distinct clusters 
were formed using unsupervised clustering, effectively separating different types of particles. The 
ability to distinguish and separate different types of structural information highlights the potential of 
our method for advancing the analysis of complex cellular structures in cryo-ET data.   
Furthermore, we applied our method to tomograms of Mycoplasma pneumoniae (O’Reilly, 2020), 
which capture the entire cell in a single tomogram. We successfully extracted structural information 
of the membrane, particles, and putative DNA filaments, creating a comprehensive 3D structural cell 
model. 
In conclusion, our novel self-supervised deep learning approach demonstrates significant potential in 
overcoming challenges associated with ground truth generation and accelerating biological 
discoveries from cryo-ET data. By enabling accurate segmentation and extraction of macromolecular 
and filament information, even in cases with limited or missing annotations, our method advances 
the analysis of cryo-ET data. Furthermore, the proposed approach can be utilized to construct a 
comprehensive 3D Mycoplasma pneumoniae cell model from in situ tomograms, showcasing its 
potential for diverse applications in the field. 
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The Scanning Electron Microscope (SEM), an essential tool in electron microscopy, excels in 
delivering detailed visuals by directing an electron beam over a specimen's surface. Its widespread 
use in material science, biology, and various industrial fields stems from its ability to provide high-
resolution, in-depth focus, and three-dimensional imagery. 
    Despite these advantages, acquiring high-quality SEM images can be challenging. This is due to 
inherent resolution limitations and noise factors that impair image clarity. Addressing these issues, 
our study introduces a method to enhance SEM image quality through advanced deep-learning 
algorithms, focusing on both denoising and super-resolution (SR) to refine image details and clarity 
effectively. 
    We introduce SEMNet, a Convolutional Neural Network (CNN) specifically designed for SEM image 
restoration with an upscale factor of 2. Inspired by the successes of the RRDBNet [1] in real-world 
image restoration, our model innovatively applies this architecture to SEM imagery, overcoming 
typical denoising and SR challenges. Fig. 1 illustrates our SEMNet. 
    SEMNet's core consists of 6 Residual-in-Residual Dense Blocks (RRDBs), a sophisticated structure 
pivotal for meticulously refining image details. Within each RRDB, we embed 3 Residual Dense Blocks 
(RDBs) characterized by their densely connected convolutional layers (denoted as Conv in Fig. 1). This 
design ensures a seamless flow of data and gradients throughout the network, significantly boosting 
feature extraction performance. The RDBs each consist of 5 convolutional layers paired with 
LeakyReLU activation functions (denoted as LeakyReLU in Fig. 1), having a negative slope coefficient 
of 0.2. Overall, SEMNet comprises 94 convolutional layers and 19 LeakyReLU activation functions, 
considering the additional convolutional layers outside the RRDBs as well. The network concludes 
with an up-sampling convolutional layer (denoted as Upsample in Fig. 1) that utilizes nearest 
neighbor interpolation to achieve SR, enhancing the quality and resolution of SEM images. 
    To effectively tackle the challenges posed by diverse noise types and low-resolution issues in SEM 
images, we devise a degradation modeling strategy specialized to producing synthesized low-quality 
(LQ) images from high-quality (HQ) counterparts. Specifically, our methodology concentrates on 
simulating two primary noise types frequently observed in SEM images: Gaussian noise, with a mean 
of 0 and a standard deviation ranging from 2 to 25, and Poisson noise, with a lambda value (λ) 
between 10² and 10⁴. Moreover, we integrated additional degradations into our datasets, such as 
Gaussian blurring effects and up-downscaling processes. This comprehensive approach is designed to 
bolster the robustness of our SEM image restoration model by broadening its exposure to a variety of 
noise and other degradation scenarios. Note that it serves as a form of data augmentation, 
dedicately aimed at enhancing image restoration performance. 
    We trained the model for 5.44×10⁵ iterations using Adam optimizer, with a batch size of 4. The 
learning rate starts at 0.0001 and is halved when the iteration reaches a multiple of 2.0×10⁵. The 
training utilizes the following loss functions with respective weights: L1 loss (1.0), Histogram loss [2] 
(0.1), and Total Variation loss (0.01). The L1 loss effectively minimizes absolute pixel differences, 
playing a crucial role in image restoration. Histogram loss targets the reduction of pixel distribution 
disparities, ensuring the restored image faithfully mirrors the statistical characteristics of the original. 
Total Variation loss focuses on diminishing noise and maintaining fine details, like edges, enhancing 
the overall quality of restored images. Our model is trained with 1300 real SEM images and 1300 
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images sampled from Flickr2K [3], which is the public dataset that has high-resolution real-world 
images from multiple categories such as nature, cityscape, human, animal, etc. 
    To quantitatively evaluate the performance of SEM image SR, we employ two metrics: Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR measures the pixel-level accuracy 
between the reconstructed and the original images, while SSIM assesses the perceptual quality by 
considering changes in luminance, contrast, and structural similarity. For both metrics, higher values 
indicate better performance. A testing set of 25 SEM images was used to calculate both metrics. 
    Compared to the classical restoration using bicubic interpolation (for SR) and Gaussian blurring (for 
denoising), SEMNet achieved an increase of 0.212dB in average PSNR and 0.1379 in average SSIM. 
These results suggest that deep learning-based image restoration methods surpass classical image 
processing techniques in enhancing the quality of SEM images. Fig.2 shows the qualitative results of 
classical restoration and the SEMNet. The original sizes of the LQ and HQ images are 640×480 and 
1280×960, respectively. Our SEMNet demonstrates superior visual performance compared to the 
classical restoration method. 
    In conclusion, we introduce SEMNet, a new deep-learning model for restoring LQ SEM images to 
HQ ones. With a diverse training dataset, SEMNet effectively removes multiple types of noises and 
upscales the image resolution through detailed degradation modeling and specialized loss functions. 
It surpasses classical restoration methods in improving SEM image quality, both quantitatively and 
qualitatively. Our work will contribute to the field of microscopy image restoration by introducing 
innovative deep-learning architecture designs and training strategies, specifically tailored to handle 
highly complex and diverse degradations in SEM images. 
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Background: 
In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is 
typically too vast for non-automated analysis. Consistent image segmentation is a common first step 
to obtain data that can be correlated with time-dependent chemical observable. Developing machine 
learned segmentation models is challenged by the requirement of more high-quality annotated 
training data than is available in most cases. In our approach, we thus substitute expert-annotated 
data with a physics-based sequential synthetic data model. 
We study environmental SEM (ESEM) data collected from the process of propanol oxidation to 
acetone over cobalt oxide. After raising the temperature to 350 °C during the reaction a phase 
transition occurs, reducing the selectivity of the catalyst towards acetone. This phase transition 
manifests in the μm-scale ESEM data as the formation of cracks between the pores of the catalyst 
surface. The aim is to generate synthetic data to train a neural network capable of performing 
semantic segmentation (pixel-wise labelling) of this ESEM data. Statistical analysis of this data will 
lead to greater insights into this phase transition. 
 
Method: 
To generate synthetic image data that approximates the observed transition, our algorithm 
composes ESEM images of the pristine room-temperature catalyst with dynamically evolving 
synthetic cracks satisfying two physical construction principles, gathered from empirical knowledge 
about the phase transition. First, crack growth propagates along surface paths which avoid close 
vicinity to nearby pores in the surface. Second, each growing path successively widens and is 
rendered with increasing contrast over short sequences of frames, allowing the algorithm to mimic 
the growth of the crack features on the surface. The synthetic dataset generated using this algorithm 
is then used to train a U-NET-LSTM recurrent convolutional neural network. This network 
architecture consists of a U-NET component with a convolutional Long Short-Term Memory cell 
appended.  
Results: 
To evaluate the quality of the neural network, and by extension the synthetic data generation 
algorithm, two neural networks were trained. The physics-based network was trained on a synthetic 
dataset generated as described above, and the random network was trained on a similar synthetic 
dataset, with the restriction that the crack growth paths avoid close vicinity to pores removed. These 
models were then benchmarked against each other using a synthetic test set to evaluate the 
importance of this physics-based component of the synthetic dataset. The results show that the 
physics-based network has a much lower rate of false positives than the random network, at a cost of 
a slightly lower rate of true positives. This is reflected in the resulting Dice-coefficients of 0.76 
(physics-based) and 0.64 (random). 
The physics-based network was then applied to the original ESEM movie, giving a fully semantically 
segmented dataset as the result. From this, statistics about the evolution of crack features could be 
extracted. Their analysis revealed that the crack feature is first visible to the ESEM about 100 minutes 
after the acetone selectivity loss event.  
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Conclusions: 
By integrating physical characteristics of the features on the catalyst surface into a synthetic training 
data generation algorithm, we obtained a network with superior accuracy and a greatly decreased 
false positive rate. By taking advantage of the temporal nature of the data through the use of a 
recurrent Long Short-Term Memory layer, we improved the confidence and accuracy of the model 
further. 
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In the field of battery electrode materials, the presence of multiple phases undergoing structural 
modifications poses a significant challenge, as it can drastically impact battery performance and 
durability. These phases introduce complexity to the electrochemical processes that occur during 
charge and discharge cycles. As Na ions transfer between the positive and negative electrodes, 
structural transformations within the electrode materials take place. The spatial distribution of Na 
ion occupancy inside the crystal host leads to phase transitions and structural rearrangements, a 
phenomenon exacerbated by the co-existence of multiple phases related to multiple electrochemical 
activations. Each phase exhibits distinct electrochemical properties and undergoes different 
structural modifications during cycling, collectively influencing overall battery performance1. 
Therefore, it is imperative to characterize and understand the individual contributions of these 
phases and their spatial distribution. 
 
For this purpose, we employed scanning transmission X-ray microscopy (STXM), offering a spatial 
resolution of 30 nm, coupled with X-ray absorption spectroscopy technique (XAS) at the HERMES 
beamline of the SOLEIL Synchrotron. Our focus was on the chemical evolution of Na3V2(PO4)2F3 
(NVPF) upon charge/discharge cycles. These NVPF cathode samples underwent electrochemical 
cycling (versus hard carbon) processes to achieve various Na contents, specifically Na2.5V2(PO4)2F3, 
Na2V2(PO4)2F3, Na1V2(PO4)2F3, and Na0.3V2(PO4)2F3. NVPF is a promising material for the next 
generation of sodium batteries, but its complex phase behavior makes it difficult to characterize 
using traditional methods2. Therefore, the main objective of our study is to develop a novel 
approach for processing STXM-XANES data to obtain phase maps within individual crystals of the 
NaxV2(PO4)2F3 (x = 0.3, 1.0, 2.0, 2.5, 3.0) cathode material. 
 
To achieve our objective, we developed a Python-based solution that leverages machine learning 
algorithms, i.e. non-negative matrix factorization (NMF) and the Pearson correlation coefficient 
(PCC). This approach enabled us to identify various sodium occupancy phases within individual 
Na3V2(PO4)2F3 crystals, providing detailed phase maps based on X-ray absorption edges of V and O 
modifying with the state of charge. With indirect observation in variations in sodium content inside 
individual crystals, our study offers fundamental insights into sodium-ion diffusion processes, which 
are essential for guiding the development of advanced cathode materials for the next generation of 
Na-ion batteries. 
 
In parallel, we conducted a structural study based on electron diffraction using four-dimensional 
scanning transmission electron microscopy (4D-STEM) automated crystal orientation mapping 
(ACOM), on the same individual crystals as in STXM3. To facilitate this process, we developed the 
ePattern4 code to index diffraction spots and reduce the noise in large datasets. By combining 
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ePattern with the software ASTAR (Nanomegas), a pattern matching approach for crystal orientation 
and phase determination, we generated phase maps based on the structural information of our 
sample. The close lattice parameters of the de-sodiated phases raise questions about the phase map 
reliability. 
 
In this study, we developed a Python solution that allowed us to obtain phase maps and reliability 
maps for the STXM-XANES data, offering insights into the confidence level of our phase mapping 
results. These maps provide valuable information about the accuracy and reliability of the identified 
phases within the sample. Our study demonstrates the effectiveness of combining advanced 
analytical techniques with machine learning algorithms to characterize phase heterogeneities within 
battery electrode materials. By developing a novel approach for processing STXM-XANES data, we 
were able to gain detailed insights into the phase behavior of Na3V2(PO4)2F3 cathode material. 
These insights are crucial for advancing the development of sodium-ion batteries, paving the way for 
the design and optimization of electrode materials with improved performance and durability. 
 

 
Keywords: 

STXM, 4D-STEM, Battery material,NMF, PCC 

Reference: 

[1] Li, J., Hwang, S., Guo, F., Li, S., Chen, Z., Kou, R., Sun, K., Sun, C., Gan, H., Yu, A., Stach, E. A., Zhou, 
H., & Su, D. (2019). Phase evolution of conversion-type electrode for lithium ion batteries. Nature 
Communications, 10(1). https://doi.org/10.1038/s41467-019-09931-2 
 
[2] Yan, G., Mariyappan,S., Rousse,G., Jacquet,Q., Deschamps,M., Rooney,D., Mirvaux,B., Freeland,J. 
W., & Tarascon, J. (2019). Higher energy and safer sodium ion batteries via an electrochemically 
made disordered Na3V2(PO4)2F3 material. Nature Communications, 10(1). 
https://doi.org/10.1038/s41467-019-08359-y 
 
[3] Folastre, N., Cherednichenko, K., Cadiou, F., Bugnet, M., Rauch, E., Olchowka, J., Croguennec, L. , 
Masquelier, C., Demortière, A. (2021). Multimodal study of dis-sodiation mechanisms within 
individual Na3V2 (PO4) 2F3 cathode crystals using 4D-STEM-ASTAR and STXM-XANES. Microscopy 
and Microanalysis, 27(S1), 3446-3447. 
 
[4] Folastre, N., Cao,J., Oney,G., Park,S., Jamali, A., Masquelier,C., Croguennec, L., Véron, M., Rauch, 
E., & Demortière, A. (2023). Adaptive Diffraction Image Registration for 4D-STEM to optimize ACOM 
Pattern Matching. arXiv (doi.org/10.48550/arxiv.2305.02124).  



IM-10 - Machine Learning-based processing and Analysis of Microscopy Data 

 
242 

Contrast Optimization Aided by Machine Learning Applied to Virtual 4D-
STEM Images  
Daniel Stroppa1, Dr. Roberto dos Reis2,3,4 
1DECTRIS, Baden-Daettwil, Switzerland, 2Department of Materials Science and Engineering, 
Northwestern University, Evanston, USA, 3Northwestern University Atomic and Nanoscale 
Characterization Experimental (NUANCE) Center, Evanston, USA, 4International Institute for 
Nanotechnology, Northwestern University, Evanston, USA 

IM-10 (3), Lecture Theater 5, august 30, 2024, 14:00 - 16:00 

Scanning Transmission Electron Microscopy (STEM) has revolutionized imaging due to its high spatial 
resolution and easy interpretation due to varied contrast mechanisms, such as atomic number (Z) 
contrast at high-angle scattering and phase contrast from the bright-field disk. The enhanced 
flexibility in terms of scattering range detection in comparison with STEM is one of the reasons that 
led to the increased interest in 4D-STEM [1]. Supported by the recent evolution of pixelated 
detectors, 4D-STEM currently allows for the recording of the complete electron scattering range at 
speeds commensurate with traditional STEM experiments [2]. With the possibility of flexible 
reconstruction of virtual STEM images with arbitrary detector shapes, contrast optimization for 
sample regions with different scattering cross-sections is envisioned.  This study delves into the 
optimization of contrast in virtual 4D-STEM images, employing both user-guided and machine-
learning (ML) optimization approaches.  
 Reference samples from semiconductor devices and supported catalysts were measured with 
fast 4D-STEM under experimental conditions mirroring standard STEM imaging practices, with 
1024x1024 scan positions and 10 us dwell time. The resultant datasets comprised 106 diffraction 
patterns with 96x96 pixels each, presenting a great challenge for manual contrast optimization due 
to the vast data volumes and nuanced contrast differences within the areas of the specimens. Figure 
1 shows manual contrast optimization applied to virtual 4D-STEM images, serving as a foundational 
comparison point for our machine learning (ML)-aided methodology. The left panel reveals a virtual 
Bright Field (BF) STEM image, with an inset in the upper left corner illustrating a typical example of 
electron scattering and the application of a virtual mask overlay, highlighting the initial manual 
approach to contrast enhancement. The center panel demonstrates a virtual STEM image that has 
been collected utilizing an optimized annular mask, reflecting the outcomes of manual contrast 
optimization efforts. In the right panel, a line profile from these virtual images is presented, with 
indications of contrast levels, offering a quantitative perspective on the enhancements achieved 
through manual methods. This figure effectively sets a benchmark for the subsequent introduction of 
our ML-aided approach, illustrating the initial state of contrast optimization against which the 
improvements facilitated by automated, ML-driven processes can be measured. By providing a clear 
depiction of manual optimization efforts, Figure 1 underscores the necessity and impact of 
transitioning towards more sophisticated, automated methodologies for contrast enhancement in 
4D-STEM imaging 
 In the current study, we develop an innovative computational framework designed to 
automate the enhancement of contrast in similar regions within 4D-STEM data. Our methodology 
integrates the advanced deep learning architecture, ResNet101 [3], for feature extraction, followed 
by Principal Component Analysis (PCA) for dimensionality reduction, and the application of 
hierarchical clustering techniques (Figure 2). The utilization of ResNet101, distinguished for its deep 
residual learning capabilities, is strategically chosen to adeptly capture the nuanced, hierarchical 
features inherent in 4D-STEM datasets, which are pivotal for identifying similarities across various 
regions. The initial phase of our analysis involves processing the 4D-STEM diffraction patterns 
through the ResNet101 model, which has been pre-trained on extensive image datasets. This step is 
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instrumental in extracting comprehensive high-dimensional feature vectors that encapsulate the 
essential attributes of each pattern. Such a transformation of raw diffraction data into a quantitative 
form surpasses traditional manual feature identification methods, which are often subjective and 
labor-intensive, by leveraging automated, objective feature extraction. Following feature extraction, 
we employ PCA to transform the high-dimensional feature space into a lower-dimensional one, 
effectively reducing the computational complexity while preserving the variance critical for 
subsequent analysis. This dimensionality reduction is crucial for enhancing the tractability and 
interpretability of the dataset, allowing for a focused examination of the significant variances among 
diffraction patterns. The analysis concludes with hierarchical clustering, an agglomerative method 
that iteratively merges data points based on their similarity, thereby organically identifying clusters 
of similar regions without the need for predefining the number of clusters. This method is selected 
for its adaptability in uncovering the inherent groupings within the data, thereby facilitating an 
intuitive understanding of similarities across the dataset. The dendrogram generated in this process 
serves as a pivotal tool for visually determining the grouping of similar regions, thereby informing the 
selection of clusters for targeted contrast enhancement. 
 
This integrated approach—merging deep learning-based feature extraction, PCA, and hierarchical 
clustering—presents a robust strategy for automatically enhancing the contrast of similar regions 
within 4D-STEM data. By doing so, it significantly advances the automation of contrast enhancement, 
ensuring more efficient, accurate, and objective analysis of material structures. This methodology 
helps to streamline the process of identifying and enhancing similar regions within complex 
materials.[4] 
 
  
Fig. 1. (left) Virtual BF STEM image, inset (upper left) indicates an example scattering and with the 
virtual mask overlay. (center) Virtual STEM image collected with an optimized annular mask. (right) 
Line profile from virtual images with the relative contrast level calculated from normalized 
intensities, with an An contrast increase from 28% to 39% is observed between images reconstructed 
from virtual BF and with an optimized annular mask.   
 
Fig 1. B) Workflow applied for the ML-based contrast optimization. 
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Background 
Spatially correlated multimodal microscopy allows an experimentalist to gain a holistic understanding 
of their sample by compiling complementary information from separate imaging modalities. This 
however relies on the robust registration of images between techniques- a difficult task with 
differences in the contrast mechanism, resolution and presence of artefacts all posing unique 
challenges. Furthermore, these problems are exacerbated by state-of-the-art instruments which 
produce high dimensional datasets (often upwards of hundreds of gigabytes), making the nuanced 
evaluation of scientific hypotheses challenging. Herein we present a general approach to coregister 
and interpret spatially correlated scanning electron diffraction (SED) and hyperspectral 
photoluminescence (PL) measurements performed on hybrid perovskites, an emerging class of 
semiconductor used as active layers in solar cells, LEDs and radiation detectors. SED, a variant of 4D-
STEM, allows for information on crystallographic phase, orientation, and defects to be uncovered, 
whereas hyperspectral PL provides information on optoelectronic characteristics and performance. 
Given the fact that hybrid perovskites show striking spatial heterogeneity in both structure and 
performance, the spatial correlation of crystallographic information and PL is motivated by the 
prospect of unequivocally linking structure-property relationships in these materials. 
 
Methods and Results 
To find common areas between separate microscopes, gold fiducial markers are synthesized and 
deposited onto a thin film similarly to the work of Jones, Osherov and Alsari et al. [1]. Due to the 
resolution differences between SED (typical probe size ~5 nm) and hyperspectral PL (resolution 
diffraction limited to ~100s of nm) we record multiple contiguous SED scans before they are stitched 
together during post processing. To stitch the SED scans together virtual bright or dark field images 
are formed which act as a proxy for the 4D dataset. A keypoint detection and matching algorithm is 
then applied between the images; classical choices for this include the scale invariant feature 
transform (SIFT) or binary robust invariant scalable keypoints (BRISK) algorithms, commonly 
implemented using OpenCV [2]. Although these are undoubtably valuable tools, it has been 
empirically found that pretrained neural network-based approaches, such as Key-Net-AdaLAM 
implemented using Kornia, provide improved mappings [3]. Once the keypoints are detected, the 
random sample consensus algorithm (RANSAC), or variants thereof, is used to define an affine 
transform which stitches one image onto the other while capturing differences in rotation, shear, and 
translation [2,3]. To make these tools accessible a Python based GUI has been developed. 
 
The registration of hyperspectral PL and stitched SED datasets is now considered. Due to the 
differences in pixel size between the two techniques the hyperspectral PL is upsampled via linear 
interpolation to match the SED pixel size. To coregister the resultant datasets several options are 
available. 1) An image transform can be defined by finding where the normalized cross correlation is 
maximal between the two images. Due to the differences in contrast mechanism a mask can be 
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applied such that only the Au fiducial marker is considered during this process. 2) The Python 
package AntsPy, primarily built for the registration of medical images can be utilized [4]. AntsPy uses 
‘multi-resolution gradient descent’ and metrics such as cross correlation or mutual information to 
define the mapping. Importantly, as all image transforms are known we can then calculate where 
each ‘pixel’ from a SED scan corresponds to in the hyperspectral PL data. 
 
Once the two datasets are coregistered the interpretation of any interrelationships between them 
poses a further separate challenge. Merely considering the SED data the scale of the problem 
becomes apparent— if 50 SED scans are acquired, each of which contains 512 x 512 diffraction 
patterns (typical during one experimental session), this amounts to a total of 13,107,200 individual 
patterns. To rapidly reduce data dimensionality, we have adapted the simple linear iterative 
clustering (SLIC) algorithm prevalent in the field of remote sensing and applied this to the SED data 
[5]. This approach allows us to reduce hundreds of thousands of individual diffraction patterns to 
~100 single crystal patterns obtained by averaging diffraction patterns over individual grains of the 
polycrystalline halide perovskite film. SLIC can be thought of as a variant to K-means clustering and 
provides a general, intuitive, robust, and computationally inexpensive methodology to cluster SED 
data. Key principles underlying the algorithm are to remove points on your detector which have a low 
dynamic range or variance prior to clustering such that burdensome computation is only performed 
on a reduced subsection of the data. Additionally, cluster centroids only consider data in their close 
vicinity meaning unnecessary computation is further reduced. The spatial and channel Euclidean 
distances are combined into a single distance measure, with a weighting value being used to define 
the importance between them. This encodes intuition that ‘pixels’ close together likely belong to the 
same cluster. Finally, clusters which are highly correlated are combined before being used to 
calculate the mean diffraction patterns from the original data. Remarkably this approach proves 
exceptionally computationally efficient with typical compute times taking approximately a minute 
using a standard desktop machine (32Gb RAM, 11th Gen Intel(R) Core(TM) i5-11400 CPU). An 
automated indexing procedure of the clustered SED patterns can then be employed to obtain phase 
and orientation maps at low computational cost. 
 
Conclusion 
The toolkit introduced herein can elucidate structure-property relationships in state-of-the-art 
optoelectronic materials and provides a robust framework to perform correlative microscopy in 
related fields. 
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Background including Aims: 
The field of Scanning Transmission Electron Microscopy (STEM), especially through the application of 
Electron Energy Loss Spectroscopy (EELS), has experienced significant advancements due to technical 
innovations such as aberration correctors, direct detectors, and increased computing power. These 
advancements have facilitated the collection of large and complex datasets, highlighting the need for 
effective data management and analysis solutions in the STEM community. Machine Learning (ML), 
with its two main categories of supervised and unsupervised learning, has emerged as a crucial tool 
for addressing challenges in EELS, including classification, clustering of spectrum images, and 
denoising tasks [1,2]. 
However, the effective application of supervised ML is often hindered by the requirement for large, 
labeled datasets, which are difficult to acquire due to the susceptibility of samples to electron beam 
damage. Addressing this drawback, this study aims to compare the effectiveness of two supervised 
ML techniques: soft-margin Support Vector Machines (SVM) and Artificial Neural Networks (ANN) in 
classifying EEL spectra for the determination of oxidation states in transition metal oxides, 
particularly focusing on iron and manganese oxides. Additionally, we present a novel unsupervised 
learning approach that employs Generative Adversarial Networks (GANs) for data augmentation to 
address the problem of labeled data scarcity and improve the precision and effectiveness of 
oxidation state detection using EELS. 
Methods:  
This research presents a comparative analysis of soft-margin SVMs and ANNs, adapted to the specific 
challenges in EELS data classification [3]. We evaluate these classifiers based on their ability to 
accurately identify features indicative of oxidation states, such as white lines and the oxygen K edge, 
and the effect of energy shifts or noisy spectra. To enhance the classifiers' robustness and 
adaptability, we investigate the impact of incorporating energy-shifted spectra into the training 
process and explore various normalization methods, including maximum and L2 norms. The latter is 
analyzed by dimensionality reduction techniques, particularly Uniform Manifold Approximation and 
Projection. Additionally, we undertake a systematic exploration of ANN architectures through 
Random Search and Tree-structured Parzen Estimator (TPE) algorithms, aiming to pinpoint the most 
effective combinations of architecture and parameters for EELS data classification. Finally, we include 
the innovative use of GANs for data augmentation, which enables the generation of synthetic EEL 
spectra from a reduced set of experimental data. This approach not only amplifies the diversity and 
volume of available training data but also reduces the dependency on extensive, experimentally 
acquired datasets. 
Results: 
Based on white lines as particularly reliable indicators for oxidation state classification, SVMs are very 
robust against energy shifts for the EEL features under investigation, and they perform even better 
when trained on energy-shifted spectra. In comparison, ANNs, especially those employing 
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convolutional layers, demonstrate a superior ability to adapt to the complexities of EEL spectra, 
achieving a level of precision comparable to the best SVMs. The analysis of normalization techniques 
and the strategic use of the cosine kernel in SVMs emerge as effective strategies for avoiding 
normalization while keeping classification accuracy. Finally, the use of GANs for data augmentation 
marks a pivotal advancement, since this approach generates synthetic data that closely mirrors the 
variability and complexity of large experimental data collections, facilitating the training of these 
classifiers to be both more accurate and more generalized, capable of adapting to the diverse spectra 
encountered in EELS analysis.  
Conclusions:  
This work not only elucidates the comparative advantages of SVMs and ANNs in the classification of 
EEL spectra but also introduces a groundbreaking strategy for overcoming the challenges imposed by 
the limited availability of labeled datasets. SVMs are particularly recommended for simpler 
classification tasks where data volume is limited, offering an efficient solution that does not 
compromise performance. On the other hand, ANNs are more suited to tackling complex 
classification problems that involve larger datasets, benefiting from their enhanced capacity for 
learning and adaptation. The successful integration of GANs for data augmentation represents a 
significant advance, substantially reducing the reliance on extensive labeled datasets and paving the 
way for more efficient and effective classifier training. 
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Background and Aims 
4D Scanning Transmission Electron Microscopy (4D-STEM) has revolutionized the study of nanoscale 
materials by offering localized structural imaging capabilities through electron diffraction patterns 
[1]. However, the inherent noise within these patterns often impedes critical structural details, 
posing challenges to accurate analysis, particularly in orientation-based clustering [2]. In response, 
this paper presents a comprehensive approach to denoising 4D-STEM datasets, focusing on 
leveraging Pix2Pix Generative Adversarial Networks (GANs) to reduce noise and the influence of the 
artefacts [3]. 
Methods 
The methodology is to focus on training a Pix2Pix GAN architecture using paired noisy-clean 4D-STEM 
image data. Adjusting the conditional GAN framework, the generator network learns to map noise 
from input images to their corresponding clean counterparts, guided by the discriminator network, 
which distinguishes between real-clean images and generated ones [3]. This approach effectively 
captures the intricate relationships between noisy and clean data, facilitating precise denoising. To 
address artifacts commonly encountered in GAN-generated images [4], we integrate additional 
regularization techniques and architectural modifications into the generator. Furthermore, 
architectural adjustments such as skip connections and multi-scale discriminators are implemented 
to enhance image fidelity and minimize artifact occurrence. 
Results 
Extensive experimentation was conducted on both synthetic and real-world 4D-STEM datasets to 
evaluate the effectiveness of our approach. Quantitative metrics, including peak signal-to-noise ratio 
(PSNR) and structural similarity index (SSIM), were employed to assess denoising performance, 
complemented by visual comparisons to highlight the clarity and fidelity of denoised images. Results 
demonstrate significant noise reduction and artifact suppression, enabling clearer visualization of 
nanoscale structures and more precise analysis. Importantly, our approach offers a substantial time-
saving advantage compared to traditional methods, reducing processing time from 15 hours (using e-
Pattern processing [5]) to just 0.2 hours. 
Conclusion 
In conclusion, our methodology provides a robust solution for denoising 4D-STEM datasets, 
leveraging Pix2Pix GANs while effectively addressing the challenge of artifact reduction. Significantly, 
this work contributes to advancing the field of materials science by enhancing the utility of 4D-STEM 
imaging techniques and emphasising the potential of GAN-based approaches in complex image-
processing tasks. 
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Digitization and an increase in complexity and price of electron microscopy hardware and 
characterization techniques, as well as the maturation of machine learning tools to extract patterns 
from large amounts of very diverse (annotated) data, promise to accelerate materials development 
by synergistically combining research data from many sources. While some labs have started 
uploading their (raw) research data to data repositories, this is only a first but insufficient step to 
realize the above-mentioned potential, as such repositories are typically either specific to a very 
particular technique or agnostic to much of the domain-specific content of the uploaded data [1,2]. 
In both cases the research data cannot be easily compared and integrated with experimental data 
from other sources or numerical predictions, and certainly not without significant human effort,. 
Therefore, working towards an interoperable knowledge representation for experiments and 
computer simulations [3-6] is the main motivation for implementing FAIR research data 
management. This highlights the need for tools for information extraction and semantic mapping. 
Fundamental to these tools' effectiveness is the creation of thorough and transparent 
documentation. This needs to be made more complete, shared openly, and should benefit from 
activities where representatives of the communities agree on defining and using standardized 
knowledge representations. 
We will report on recent progress by the FAIRmat NFDI consortium [7] in extending NOMAD, the 
world’s largest data base for ab-initio computational materials data, to also host experimental 
research data on the synthesis and characterization of materials in a machine-accessible manner, i.e. 
annotated with well-defined and interoperable metadata that establish links between related 
(experimental and computational) quantities [8-10]. We will report on our work on developing a 
comprehensive data schema for electron microscopy and related techniques, and the corresponding 
software tools for data converting, visualizing, and online-processing. We have integrated these tools 
as customizations into NOMAD Oasis to offer a locally-installable version of the NOMAD research 
data management system to complement its note keeping, file format parsing, cloud-based domain-
specific data analyses, and information retrieval capabilities. 
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To contribute to the understanding of failure and fatigue, we examine the local microstructural 
strain/stress peaking as well as crack initiation/propagation by in situ methodology. Moreover, 
systematic errors in load/displacement of the measuring setup may be overcome by highly localized 
strain measurements, e.g. high-resolution EBSD in conjunction with image correlation.  This requires 
in situ material tests, and we aim at two complementary goals. One is to contribute to alloy 
development and to optimize microstructure of selected alloys determining the macroscopic 
mechanical properties.  
The second is to validate modern microstructure-based FEM simulations and to develop termination 
criteria for classical FEM simulations, e.g. for crack initiation. Therefore, the Mechanical Engineering 
Department develops in situ testing machines for static and dynamic tests. Latest developments are a 
portable, miniaturized 3-point bending machine for use in FIB/SEM/XRD (Fig. 1 a). Thos enable the 
direct observation of microstructural changes like crack initiation/propagation, as well as phase 
transformations, e.g. in steels. As an example, the bending machine (750g, 100x100x50mm) with 
independent load/displacement sensors allows for massive plastic deformation at loads up to 4kN. 
Our solution includes a user-friendly interface to lower the entry barriers for beginners (Fig. 1 c). In 
this contribution, we highlight the possibilities to observe dynamics of crack initiation/propagation, 
phase transformations, and the local evolution of the microstructure during testing of materials like 
Al alloys and austenitic steel. Electron backscatter diffraction (EBSD) is employed to in detail 
understand the crystallographic structure adjacent to the crack (Fig. 1 b). Direct image correlation is 
used to examine local strain peaking. Future plans involve establishing high-resolution EBSD 
instrumentation and data analysis for highly localized strain/stress/GND mapping as well as 
corresponding XRD data during a single experiment.  
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Pixelated direct electron detectors identify electrons by their interaction with the sensitive detector 
volume. The relevant interaction is an energy deposition via electron-electron scattering. However, in 
applications like 4D-STEM, the user is interested in the spatial-resolved absolute number of incident 
electrons on the detector surface. Therefore, the goal is to count each electron exactly one time at 
the position it crosses the detector surface. The following assumptions were made for silicon as 
detector material but are transferable to other materials as well. 
Low-energetic electrons (E ≈ 10 - 30keV), as used in scanning electron microscopes, typically deposit 
their energy in a small volume very close to the point of entry. This volume is mostly much smaller 
than the size of the pixel structure (e.g. for the standard pnCCD 48 µm x 48 µm). 
High-energy electrons with energies > 100 keV, as usually used for transmission electron 
microscopes, typically do not deposit their energy locally at one specific point but deposit the energy 
in many steps along three-dimensional tracks through the detector volume.  For electrons with a 
primary energy of 300 keV, the average length of these tracks is 450 µm. The shape of these tracks is 
caused by multiple scattering of the electrons in the detector volume and, therefore, is stochastic. 
The energy deposition in the three-dimensional detector volume locally generates charge carriers 
that form a charge cloud. Direct electron detectors like the pnCCD collect the charge cloud at the 
opposite side of the entrance window. Therefore, the charge cloud drifts due to an applied electric 
field to the opposite side of the detector. During the drift time, the size of the charge cloud increases 
due to repulsion of the charge carriers themselves and due to diffusion. In comparison to the 
statistical behavior of the energy deposition, the drift process behaves deterministically. The 
collected charge carriers in each pixel of the pixel structure correspond to the binned two-
dimensional projection of energy deposition, widened by the drift process. The total number of 
charge carriers is directly related to the amount of deposited energy. 
For low primary energy, the structure of the charge cloud is mostly just influenced by the primary 
energy of the electron itself, and its point of entry relative to the pixel structure. Therefore, for 
electrons that enter the detector at the same point with the same primary energy the pixel-wise 
collected charge clouds look similar. For higher energetic electrons, the size and the shape of the 
pixelated charge cloud are mostly influenced by multiple scattering. Therefore, the distribution of the 
pixel-wise collected charge carriers is different for each individual electron. During the detector 
readout, the pixel-wise collected charge carriers are transferred into a detector response. If the 
measuring process of the number of individual charge carriers in each pixel is sufficiently precise, the 
detector response is a good approximation of the two-dimensional projection of the charge cloud. 
The structure of the 2D projection can be used to calculate the point of entry for individual electrons 
for higher energetic electrons on pixel level and for lower primary energies even on sub-pixel level. 
However, for some applications in TEMs and SEMs require a higher electron flux on the detector such 
that the measured two-dimensional projection of the charge clouds of two or multiple primary 
electrons overlap. This leads to three different regimes depending on the flux. The first regime is 
where the detector response of individual electrons is separable. The second regime has 
contributions where multiple electron traces overlap but the contributions of the individual primary 
electrons are still visible. The third regime is dominated by a very high flux that leads to intensity 
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images. In the third regime, the contributions of individual primary electrons are not visible anymore. 
Different regions in the same diffraction pattern can hold different regimes. 
Our algorithm can handle the different regimes in flux on pixel level and reconstructs the number of 
contributing primary electrons and their points of entry. The point of entry reconstruction happens 
depending on the energy of the primary electrons and the flux on physical pixel level or subpixel level 
in real-time. In this contribution, we will show that the proposed Smart Counting algorithm 
significantly increases the precision in counting the number of primary electrons and their spatial 
position compared to a simple counting mechanism by individual discriminators on pixel level. 
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Background incl. aims 
Analyzing large amounts of microscopy images in a FAIR manner is an ongoing challenge, 
turbocharged by the large diversity of image file formats and processing approaches. Recent 
community work on an OME next-generation file format [1] offers the chance to create more 
shareable bioimage analysis workflows.  Building up on this and to address issues related to the 
scalability & accessibility of bioimage analysis pipelines, the BioVisionCenter, a newly-created 
structure of the University of Zurich & the Friedrich Miescher Institute for Biomedical Research, is 
developing Fractal [2], an open-source framework for processing images in the OME-Zarr format. 
 
Methods 
The Fractal framework consists of a server backend & web-frontend that handle modular image 
processing tasks. It facilitates the design and execution of reproducible workflows to convert images 
into OME-Zarrs and apply advanced processing operations to them at scale, without the need for 
advanced expertise in programming or large image file handling.  
 
Results 
Fractal allows users to orchestrate the analysis of terabytes of high content microscopy images on 
high performance clusters. It comes with pre-built tasks to perform instance segmentation with 
state-of-the-art machine learning tools, to apply registration, and to extract high-dimensional 
measurements from multiplexed, 3D image data. We are providing a web front-end to facilitate user 
interactions with Fractal and streamline the submission of image analysis jobs to a slurm cluster. 
Finally, by relying on OME-Zarr-compatible viewers like napari [3], MoBIE [4] and ViZarr [5], Fractal 
enables researchers to interactively visualize terabytes of image data stored on their institution’s 
remote server, as well as the results of their image processing workflows. 
 
Conclusions 
We present the open-source framework Fractal for FAIR image analysis at scale in the OME-Zarr 
format. 
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Background 
Performance and durability of solid oxide cell (SOC) electrodes depend heavily on their porous 
microstructure properties and evolution over time. Ga+ FIB-SEM tomography has been pivotal for 
reconstructing SOC microscopic structures with nanometric precision [1], albeit limited to small 
volumes. With the emergence of Plasma FIB-SEM (PFIB-SEM), offering access to significantly larger 
material volumes [2], SOC microstructure investigation has taken a leap forward. 
The porous nature of SOC microstructures poses challenges during both data collection and 
processing, resulting in artifacts like FIB curtaining and back-pore issues. Though techniques such as 
pressure-filling pores with resin [3] and rocking polish [2] mitigate these, electron charging effects 
persist. Deep Learning (DL) methods have shown promise in addressing back-pore issues [4], but 
challenges remain in electron charging compensation.  
Post-segmentation, serial-sectioned SEM images undergo further processing to create 3D digital 
representations. This involves numerical simulations incorporating morphological parameters like 
tortuosity and constrictivity, crucial for understanding transport properties. Various software 
packages aid in this 3D characterization process [5].  
This contribution presents a complete workflow for SOC microstructure characterization, from 3D 
reconstruction to comprehensive quantification. Using a Plasma FIB-SEM platform and automated 
serial sectioning software, a large 3D volume of SOC electrode is obtained, enabling detailed analysis. 
Advanced SEM imaging techniques coupled with DL-based segmentation streamline data processing, 
significantly reducing workflow time. 
 
Methods 
To demonstrate the workflow (Figure 1), we characterize a fresh solid oxide fuel cell (NYDC-55-3-0). 
Using the Plasma FIB-SEM platform and automated serial sectioning software (Auto Slice and View 5 - 
ASV5), we collect a large 3D volume (180 × 150 × 30 µm³) with a voxel size of 32 × 32 × 50 nm³. The 
Xe+ plasma beam current of 60 nA @ 30keV serial sections the specimens with a ±3° beam rocking 
motion and a 25 nm cut advancement. After each odd PFIB cut, SEM images are simultaneously 
acquired perpendicular to the cut face using a through-lens detector (TLD) for secondary electrons 
(SE) and a retractable concentric backscattered electron detector (CBS) for backscattered electron 
images. We utilize an SEM current of 200pA @ 2keV high tension and a 5 µs pixel dwell time to 
exploit the charge contrast phenomenon captured by the TLD-SE detector, enabling the separation of 
percolated and non-percolated Ni. The backscattered electron images from the CBS detector 
highlight voids and YSZ grains. The activated ASV5 auto functions for SEM, including source tilt, lens 
alignments, stigmatisms, focus, and image matching for drift correction, ensure consistent imaging 
conditions throughout the ASV run. By employing auto image matching for drift correction and SEM 
imaging at the normal angle to the cut face, we maintain volume-lossless conditions in the 3D image 
stack before data post-processing. 
 
Results 
We developed automated Avizo recipes to streamline data processing, analysis, and enable 
consistent and reliable data quantification and 3D visualization. The image stack doublets are 
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subjected to denoising and segmentation into Ni, YSZ, and Voids using DL models [6], which also 
distinguish between percolated and non-percolated phases. The recipes calculate various spatial 
parameters (Figure 2) such as tortuosity [7], TPBs (total length, length/volume), phase volume 
fractions, percentage of non-percolating for each phase, and surface area/volume for Void|YSZ, 
Void|Ni, and YSZ|Ni. Notably, recent advancements in SEM image post-processing and denoising 
using DL algorithms in Avizo software have reduced SEM imaging time by 50%, resulting in a 25-30% 
reduction in the total acquisition time for the entire dataset. 
 
Conclusion 
This study shows comprehensive workflow that harnesses deep-learning predictions, encompassing 
the entire process from PFIB-SEM-based 3D microstructure analysis to meticulous quantification, 
illustrated through the examination of a freshly prepared solid oxide fuel cell. Our innovations have 
led to a thousandfold increase in image data acquisition volume compared to previous studies, all 
while maintaining a consistent voxel size. To ensure robust identification of material constituents, we 
simultaneously acquired CBS BSE and TLD SE images, ensuring 99.99% confidence. Key focuses 
include precise specimen preparation, optimizing PFIB-SEM setup for serial-sectioning, SEM image 
acquisition, DL-based post-processing and segmentation, recipe-oriented 3D quantification of 
morphological parameters, and report generation. Advanced SEM imaging techniques, coupled with 
automation and recent advancements in SEM image post-processing and segmentation using ML 
algorithms, streamline the characterization process, significantly reducing workflow execution time. 
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2D materials as WS2 have become increasingly relevant and widely studied in recent years due to 
their electronic and optical applications [1]. One of the most effective techniques for characterizing 
these materials and studying their physical properties is High-Angle Annular Dark-Field (HAADF) 
imaging in a Scanning Transmission Electron Microscope (STEM). On the other hand, to study lighter 
atoms it is common to use Integrated Differential Phase Contrast (iDPC) STEM. These techniques 
allow researchers to study the crystallography of the material to determine the presence of defects. 
These images often contain noise that poses a challenge when studying vacancies. Consequently, we 
developed an FFT denoising technique employing a Convolutional Neural Network (CNN) with a U-
NET architecture [2, 3]. The CNN was trained using more than 5000 simulated spectra from diverse 
materials and various orientations. After FFT denoising, we could perform an inverse FFT (IFFT) to 
return to real space. This results in a significantly cleaner image, rendering crystallographic analysis 
more accessible, as atomic positions become much more discernible. Conversely, the FFT denoising 
method leads to the emergence of ‘fake atoms' in locations where vacancies should exist. While this 
outcome may initially appear counterproductive, it was, in fact, the crucial element that enabled the 
execution of this study. In this way, by subtracting the original experimental HAADF-STEM image 
from the filtered one, we obtain a new images where the bright spots correspond to the atomic 
vacancies 
 (Figure 1). 
In conclusion, the methodology employed in this study has enabled a statistically significant analysis 
of vacancies across multiple images. Each image has been subjected to a detailed examination of 
more than 3000 atomic positions, yielding robust and reliable results. This approach not only 
provides a profound understanding of vacancy distribution but also gives the way for automating the 
statistical analysis of vast amounts of images within short timeframes. This potential for automation 
not only enhances process efficiency but also holds promise for accelerating the pace of discovery 
and understanding in research fields reliant on atomic-scale image analysis. 
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Background 
For scientists and engineers across various disciplines, image analysis serves as a vital tool for gaining 
deeper insights into complex phenomena. Whether studying biological structures, geological 
formations, engineering components or materials microstructures, the ability to extract quantitative 
data from images is invaluable. Image analysis enables engineers and researchers to replace manual 
analysis and increase productivity, to gain additional data insights and improve statistics, and to 
advance their work by solving complex problems. By harnessing the power of image analysis, 
scientists and engineers can accelerate research, optimize manufacturing processes, and improve 
performance of products across a wide range of fields, ultimately advancing our understanding of the 
natural world and improving technology. 
 
Method and results 
Using deep learning and powerful image analysis engines, MIPAR (www.mipar.us) allows users to 
perform a fast, accurate and automated analysis of images. Through a user-friendly interface, 
engineers and researchers can personalize analysis to their samples as well as visualize and extract 
measurements - all without programming. Through five integrated applications, MIPAR offers 
flexibility and efficiency for 2D and 3D analysis applications. The key ingredients are in the Recipes, 
which include a series of analysis steps that are tailored to each application. As a result, researchers 
and engineers can now easily solve problems such as grain size analysis excluding the twins, particle 
analysis of clusters, defect identification and many more.  
 
Seamlessly integrated within the MIPAR ecosystem, the Snap tool, powered by Spotlight, offers 
accelerated creation of training datasets for an efficient and streamlined model training workflow. 
The accurate segmentations provided by Spotlight allow for less time spent creating models and 
algorithms, leading to faster data collection. MIPAR Spotlight simplifies image analysis even further 
by limiting the need for custom model configurations and amplifying a model’s ability. 
 
Conclusion 
This presentation will overview the advantages of using MIPAR Spotlight, the new cutting edge of 
detection, to analyse grains, particles, droplets, and defects with real industrial applications. 
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Background incl. aims 
Nanoparticles (NPs) are typically observed and analysed using High Resolution Transmission Electron 
Microscopy (HRTEM) for highly precise structural studies at the atomic scale. However, determining 
their 3D shapes from 2D HRTEM images is a tedious process. Indeed, this type of analysis is based on 
manual post-processing which suffers, among other issues, from experimental noise or human bias 
performed at post-experimental stage. In this context, the integration of artificial intelligence (AI) 
methodologies into data acquisition and analysis protocols is a very promising approach [1]. To tackle 
the problem of identifying the 3D shape of NPs, we developed a Deep Learning (DL) model to 
automate this task ensuring reliable statistical analysis of a large number of NPs many of which 
cannot be identified by conventional methods. 
Methods 
For this purpose, we extend an approach we had developed to identify the structure of carbon 
nanotubes from their Moiré patterns obtained from HRTEM images [2]. More precisely, the DL 
model, leveraging Convolutional Neural Networks (CNNs), is trained on datasets of simulated HRTEM 
images of NPs, labelled according to their shapes, ranging from 4 to 8 nm. A critical point of this study 
was generating a representative and optimised dataset. To accomplish this, we constructed atomistic 
3D models of NPs deposited on an amorphous carbon substrate, subjecting NPs to random rotations 
to encompass all potential observed orientations. Furthermore, we simulated the amorphous 
substrate using realistic carbon membrane derived from a tight-binding framework and noise 
models, to mimic experimental conditions [3]. Finally, HRTEM images were simulated using the Dr 
Probe code [4] based on the multi-slice method with parameters consistent with aberration-
corrected transmission electron microscopes. 
Results 
The objective of generating an optimal training dataset was attained through comprehensive studies 
evaluating the impact of various parameters, including amorphous carbon, resolution, focusing 
conditions, NPs’ size, and NPs' orientations, on DL model predictive accuracy. 
Conclusion 
This approach has resulted in the development of an efficient and accurate DL framework for 
predicting 3D NP shapes from 2D HRTEM images, validated across both simulated and experimental 
datasets (see figure). 
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Background incl. aims 
In both SEM and TEM, the alignment process for each experiment is unique and not replicable. If not 
done well this also has major implications on the stability of the experiments and the quality of the 
obtained data regardless of the specimen or sampling technique. It requires days of diligent practice 
on a variety of electron microscopes in order to become an expert and be able to collect data with 
the highest possible resolution consistently across experiments. 
A proposed solution to this skill barrier is a digital twin for an electron microscope, with the purpose 
being to make experiments more reproducible, efficient and improving the overall reliability and 
resilience of experiments [1]. The initial steps in this is to automate the alignment process, starting 
with the eucentric height using machine learning (ML) techniques.  
Methods 
The proposed method for finding the optimal eucentric height is reinforcement learning (RL), a 
subset of ML where an agent learns how to interact with an environment in order to make decisions. 
Using a q-learning function and a reward function the agent is able to determine the optimal action 
in order to achieve the correct z-height. For training an agent on images at different z-heights 
learning a q-table is sufficient due to the small and finite action space. However, for applications on a 
microscope, a deep-q-network (DQN) is required, which instead of knowing the possible rewards 
from a trained q-table estimates the rewards and works for larger action spaces [2]. 
Results 
Initial tests on a small state space where the environment is defined as images taken at different z-
heights with intervals of 2μm ranging from 0μm to 50μm (including the eucentric height), show that 
the agent is able to learn a q-table within 10000 iterations. With this initialized q-table the agent is 
able to find the image that was taken at the eucentric height instantaneously. 
Conclusion 
Preliminary tests indicate that reinforcement learning holds promise as a viable solution for 
automating the alignment process of an EM, potentially reducing the expertise needed to conduct 
experiments effectively and accurately. 
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Abstract- Dedicated machine-learning techniques applied to superresolved HRSTEM images are used 
to map interstitial atoms with decananometric spatial resolution and picometric precision. This 
methodology is illustrated with the technologically-relevant case of etched GaN, used for power 
devices. In general, an average chemical concentration evolution close to a typical erf implantation 
profile is obtained, in agreement with atomistic simulations. 
 
Keywords: imaging, super-resolution, superresolution, machine-learning, mapping, interstitials, TEM, 
STEM, HRSTEM 
 
 
I. BACKGROUND AND GOALS 
The interstitial atoms have a potential impact on the performance and reliability of microelectronic 
or electro-optic or quantum devices, but the precise mapping of their distribution is a very difficult 
task. In the field of MOSc-HEMT power devices, the etching steps may induce a detrimental ion 
implantation at critical interfaces in the case of recessed hybrid processes. These defects might 
potentially induce parasitic leakages currents and a detrimental reduction of breakdown voltages. 
The local defectivity increase due to such technological steps usually occurs in an ultrashallow range 
(nanometric or below), which is very difficult to precisely estimate.  To tackle this major 
characterization challenge, novel methodologies have been developed, patented [1], and will be 
detailed here.    
 
To map the chemical concentration profiles, many state-of the art techniques are currently used, 
such as secondary ion mass spectrometry (SIMS), electron energy loss spectrometry (EELS) or Energy 
dispersive X-ray analysis (EDX) among others, but all the techniques have their intrinsic limitations. 
For instance, it is usually very difficult to distinguish between substitutional and interstitial atoms 
with these characterization methods. Interstitial atoms are so small that they are generally very 
difficult to detect by conventional transmission electron microscopy [2]. Hence, it is often preferable 
to use aberration-corrected scanning transmission electron microscopy (HRSTEM or 4D-STEM) in 
HAADF mode (Z-contrast imaging) for heavy atoms and annular bright filed (ABF) or customized 
imaging modes for lighter elements [3],[1]. Light atoms such as H, Li or O play an important role in 
energy devices, and their mapping at the picometer level is useful to assess their potential electrical 
activity. In this presentation, we use our patented tools to extract the precise positions of interstitial 
atoms from superresolved HRSTEM images and optimized machine-learning algorithms. 
  
II. METHODOLOGY 
The original HRSTEM-HAADF images are obtained by aberration-corrected electron microscopy using 
the FEI Titan Themis microscope operated at 200 keV.  
 
All the details of the methods are provided in the following patents. The patent EP4020378B1 is used 
to denoise the image by convolution. 
 



IM-10 - Machine Learning-based processing and Analysis of Microscopy Data 

 
The patent EP 4020379A1 provides the superresolved image, with a resolution typically increased by 
a factor of 5 compared to the original image. 
 
Then the patent EP3671190B1 is used to obtain the positions of the interstitials using machine-
learning based methodology with 3 binary classes: interstitial atoms, substitutional atoms and 
elsewhere. Only 3 areas are sufficient for an efficient supervised training with the Fast Random 
Forest algorithm [4], based on tree bagging and feature sampling.  
 
III. RESULTS AND DISCUSSION 
A typical result of atomic mapping is displayed on Fig. 1, in the case of etched GaN. The substitutional 
atoms are represented in grey, whereas the interstitial atoms are colorized. The spatial Abbe 
resolution is estimated from the superresolved diffractogram. The pic (-6,12,0) provides an horizontal 
resolution of 27 pm while the presence of the (0,0,13) reflection implies a vertical resolution of 38 
pm, which is close to the record obtained by ptychography [5].  
 
The vertically-averaged profiles are typical of implantation profiles, in agreement with atomistic 
simulations (Fig. 1 bottom). These results are consistent with the energetics of the plasma etch, when 
ion bombardment is expected. The possible vertical alignment of interstitials is attributed to possible 
channeling effects inside the implantation tracks.  
 
This approach, validated by simulations and atomistic modeling, provides a universal methodology to 
map the interstitial atoms at the atomic scale, with a spatial resolution around 30 pm or even better 
in the case of ultrathin (about 20 nm thick) TEM lamellae with sample preparations close to 
perfection. 
 
IV. CONCLUSIONS 
Using super-resolution and machine-learning, it is possible to obtain accurate maps of interstitial 
atoms from high-resolution electron microscopy images, to analyze and optimize the technological 
processes involving ion implantation or surface damage. This method is universal, and the spatial 
resolution achieved by these combined techniques is close to the best currently achievable.   
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Background incl. aims 
There is a growing need to quantify and characterize the varying components within cements and 
concretes in multiple dimensions and at the multi-scale. This is particularly true for cements and 
concretes developed for the nuclear industry, whether as vessels for nuclear reactors or for nuclear 
waste containment, and to understand their constituents more holistically in three dimensions. 
However, cements and concretes are generally challenging to image in 3D, particularly at high 
resolution; this is because of typically large core sizes and consequential limited X-ray penetration, as 
well as varying chemistries of the components, and differing grain sizes. Further, because most of the 
components are calcium based, it can be difficult to differentiate them using density-based greyscale 
data alone when using traditional reconstruction (FDK) techniques. Because of these difficulties, 
scans usually need to contain many projections and long exposure times, therefore leading to long 
scan times and limited throughput. Here, we apply a variety of machine learning and AI approaches 
in a new XRM > machine learning reconstruction > AI quantified phase classification workflow. This 
workflow vastly improves the resulting scan data and enhances the component quantification 
process.  
 
Methods 
Here, we use non-destructive 3D imaging via X-ray Microscopy (XRM), combined with a novel 3D 
automated quantitative phase classification technique to spatially characterize the mineralogical 
phases in a variety of cements and concretes. We collected multi-scale 3D scans on a ZEISS Xradia 
Versa 620 X-ray Microscope (XRM), the data being subsequently run through numerous 
reconstruction options belonging to the Advanced Reconstruction Toolbox (ART): this includes 
DeepRecon Pro, a machine learning based approach for advanced denoising, enhanced contrast, and 
faster scans, and DeepScout, which allows users to upscale higher resolution interior tomographies 
to larger fields of view without sacrificing resolution. Finally, we use Mineralogic 3D to spatially 
characterize and quantify the mineralogy/phases within the concretes and cements in 3D (Mitchell et 
al., 2024).  
 
Results 
We find that DeepRecon Pro is effective at reducing noise in the resulting scan data (Figure 1). We 
also find that by using DeepRecon Pro, we can collect fewer projections (801 rather than 2401), 
resulting in better quality data, and we are able to collect scans three times quicker (29 minutes 
instead of 1 hour 35), leading to greater throughput of samples. We also find that we can improve 
the size of the field of view for high resolution scans; we are able to upscale 5.8 um voxel size scans 
from 5.9 mm3 field of view to 23 mm3, resulting in a field of view increase, and resolution recovery, 
of roughly 4x. This consequently leads to more representative segmentations over larger sample 
areas and better-quality data. In the final step we have applied Mineralogic 3D to achieve 
quantitative phase classification of the concrete components; we are able to distinguish components 
of similar chemical composition and contrast (in particular, those that are Ca-rich), segment, and 
quantify them, which is an improvement on standard thresholding which does not take into account 
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the scan conditions and relative density of the material. The results presented here show how new 
software options (DeepRecon Pro, DeepScout, Mineralogic 3D) are valuable to improve the image 
quality, characterization, and quantification of cements and concretes in 3D.  
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Recent advances in high-speed signal processing electronics allow any analog STEM detector to 
operate in an event-counting mode, measuring individual electron detection events in real time. This 
technology delivers images with zero dark-noise, improved linearity, and SNR limited only by ideal 
Poisson counting statistics [1]. By combining such event-counting hardware with fast electrostatic 
dose-modulators (EDM) [2], a real-time ‘event responsive’ imaging mode can be realised [3]. We call 
this Trigger Event Modulated Probability Observation STEM, or TempoSTEM for short. 
TempoSTEM operates in a fundamentally different way from classical STEM imaging. In classical 
STEM, we observe fixed periods (dwell times) and record the varying numbers of 
transmitted/scattered events that arrive at a detector. In TempoSTEM, we specify a fixed number of 
events and measure the varying time needed for the image signal to reach that number of events in 
each pixel location. In both pulse counted STEM and TempoSTEM the operator sees images 
expressed in quantitative units of events-per-microsecond. However, there is one key difference; in 
TempoSTEM the beam is blanked for the remainder of the pixel once the threshold is met, 
significantly reducing dose and sample damage. The beam is un-blanked at the start of the next pixel 
and a fresh measurement begins. 
Information theory predicts that for every successive electron detected within each pixel time, there 
is a diminishing return on information content; this has also been confirmed experimentally [3]. This 
creates a balance where a lower Tempo trigger exit condition ensures the most efficient detection 
per-electron, but it does not ensure the most readily analysable SNR overall. Here we present a mode 
to iteratively update noisy high-variance pixels to achieve improved resolution and SNR. 
Another common approach to increase the SNR of an image is through the stacking of multiple 
frames. Where a hardware EDM is present [2], a further option is to only revisit a subset of pixels in 
subsequent frames in the series. After the first noisy scan-frame of a TempoSTEM acquisition, such as 
with a trigger of n=1 electron, we can calculate the local variance of image pixels. On the second scan 
frame, we can revisit only pixels that are outliers by, say, more than one standard deviation of their 
neighbours. This might be around 25-30% of the pixels for example. For these pixels, an additional 
TempoSTEM observation can be made and the beam blanked elsewhere to minimise dose. The 
rescanned pixels have now received the dose equivalent to an n=2 TempoSTEM exit condition, and 
the scattering rate estimate is updated. On a third scan for example, the number of outlier pixels 
reduces and even fewer are rescanned to an effective n=3 exit condition. After some number of 
rescans the variance is converged, and the image acquisition can be considered complete. For an 
equivalent target resolution a dose saving of around 2x is achieved even relative to the already low-
dose TempoSTEM approach. This method pushes below one event per-pixel-per-frame, maximising 
the information from each electron, increasing the best achievable combination of resolution and 
beam damage. 
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Background incl. aims 
Channeling contrast in the Scanning Electron Microscope (SEM) facilitates the imaging of crystals and 
their defects. A name for this approach has been coined as ECCI for “Electron Channeling Contrast 
Imaging”. This contrast arises from the diffraction of the electron beam as it traverses through the 
crystalline sample, and is intricately linked to the crystalline orientation of the underlying crystal. 
Within a grain, the channeling contrast hence aids in the recognition of crystalline defect. In a 
polycrystalline sample, neighbouring grains can be differentiated by the channeling contrast due to 
their difference in orientation. However, obtaining multiple ECCI images with different angles of 
electron beam incidence on the crystal is necessary: (i) to identify the defect character (such as screw 
or edge dislocations) and (ii) to ensure that all grains are detected within a polycrystalline region of 
interest. Eventually, the acquired ECCI image series have to be treated quantitatively to extract 
valuable information about the microstructure. In this context, machine learning, particularly 
clustering algorithms, is extremely beneficial for analyzing ECCI data. As an example, defects like 
dislocations and stacking faults can be detected in an ECCI image series by clustering [1-2]. In the 
present work, the idea is to process ECCI image series by clustering: (i) to extract the grain size 
distribution rapidly in an automatic and reproducible manner, (ii) to extract meaningful information 
about the microstructure, i.e., recrystallized fraction in an aluminum alloy [3], and (iii) to reduce 
dramatically the computation time of orientation maps using the eCHORD approach [4]. 
 
Methods 
The raw dataset consists of a series of ECCI images acquired by rotating the region of interest (ROI) in 
the SEM, with the sample being tilted to  1̴0-15°. Such an image series constitutes a datacube from 
which intensity profiles can be extracted at each ROI position, reflecting the variation of the 
backscattered electron (BSE) signal due to the sample rotation. To demonstrate the effectiveness of 
clustering algorithms for estimating grain size distributions, a copper thin film of 3 µm thickness 
exhibiting submicronic twins as thin as 80 nm in thickness is employed as a test sample. For 
determining the recrystallisation fraction, a 6XXX aluminum sample is considered and subjected to 
heat treatment to achieve a ~75% recrystallised microstructure. Finally, to explore the possibilities 
for fast-indexing within the framework of the eCHORD approach, duplex steel with coexisting 
austenite and ferrite phases is adopted.   
 
Results 
The intensity profiles defined at each place in the ROI will be used to cluster the data for grain size 
distribution calculations. The HDBSCAN algorithm [5] was selected for clustering, as it does not 
require the number of clusters (i.e., of grains) as an input. Furthermore, the algorithm automatically 
determines a reasonable criterion for defining a cluster. The influence of the intensity profiles pre-
treatments is discussed, as well as the minimal number of images required for the clustering is 
explored, which is found to be between 10 to 20 ECCI images only. 
For the recrystallisation fraction, it appears that the non-recrystallised area in the ROI corresponds to 
pixels that are left apart within the “noisy” class during the clustering using HDBSCAN. The results 
show good agreement with the recrystallised fractions as determined by EBSD on the same ROI. 
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Concerning eCHORD orientation mapping, the approach involves grouping similar intensity profiles 
into clusters, computing the mean profile for each cluster, and subsequently indexing it by comparing 
it to an eCHORD database. In this case, over-clustering is not a problem, and the KMEANS algorithm 
has been used with a significantly higher number of clusters than the apparent grain count, ensuring 
a reasonable spatial resolution is maintained. If some clusters belong to the same grain, the indexing 
operation will yield the same crystallographic orientation in the final map. This approach has been 
applied to the image series of duplex steel, allowing it to discriminate between the austenite and 
ferrite phases. Due to the tremendous GPU-computed indexing speed, it is possible to compare all 
the cluster profiles to both austenite and ferrite databases in order to perform phase mapping and 
retrieve the correct orientations. 
 
Conclusion 
This work demonstrates that clustering the ECCI image series using several types of clustering 
algorithms (HDBSCAN, KMEANS) can be extremely beneficial for several applications such as grain 
size distribution calculation, recrystallization fraction determination, phase discrimination, and 
orientation map computation. 
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Background  
Scanning Transmission Electron Microscopy (STEM) has been shown to be a powerful tool for 
observing the atomic structure of complex materials. However, the radiation damage induced by the 
electron beam limits imaging beam-sensitive materials with acceptable signal-to-noise ratio.  
Subsampled STEM [1] has recently been investigated as an approach for reducing the radiation 
damage without compromising the level of signal per each measurement (or probe position). It is 
achieved by subsampling the grid of probe positions, which results in an incomplete set of 
measurements. A complete STEM image is then recovered from those subsampled measurements 
through an inpainting process.   
A myriad of inpainting methods have been introduced based on, e.g., variational [2], Plug-and-Play 
(PnP), and deep learning frameworks [3].  In this work, we focus on PnP methods, which have been 
widely used for solving various imaging problems by using an off-the-shelf denoiser as an image 
prior. 
Methods 
We propose a deep learning-based inpainting method. Inspired by the work on Deep Denoiser Prior 
(DDP) for image restoration [4], we utilize a pre-trained deep neural network as an implicit image 
prior and then integrate that pre-trained network into an iterative inpainting algorithm. We discuss 
how the training of a DDP can be improved using synthetic and experimental STEM images corrupted 
by different sources, such as detector noise, scan distortion, sample movement, and aberrations. 
Therefore, we also introduce a new tool for the fast generation of synthetic STEM images. 
Additionally, inspired by recent work on invariant priors [5], we demonstrate that enforcing 
equivariance to certain transformations, such as rotations, reflections, and translations, during the 
denoising step, improves the quality of inpainting. 
Results  
The results of our inpainting method are shown in Figure 1. The images tested in Figure 1 were not 
used for the training of the denoiser neural network. Ground truth synthetic images of SrTiO3 and Si 
were generated using our image generation tool. These images were then randomly subsampled 
with respect to 25% of probe positions. Despite slight imperfections around the boundary of the 
images, marked by a yellow arrow, the reconstructed images are of very high quality, with Signal-to-
Reconstruction Error Ratios (SREs) greater than 43 dB. 
Conclusion 
This work presents an inpainting method for subsampled STEM data that leverages the power of 
both variational and deep learning methods. Given the flexibility of PnP methods, any neural network 
architecture can be used as a DDP. In the future, we plan to extend this work to inpainting 
subsampled data in different modes of electron microscopy, such as scanning electron microscopy 
and 4-dimensional STEM. 
 



IM-10 - Machine Learning-based processing and Analysis of Microscopy Data 

 

 
Keywords: 

Deep Learning, STEM, Inpainting, Low-Dose 

Reference: 

[1] D. Nicholls, A. W. Robinson, J. Wells, A. Moshtaghpour, M. Bahri, A. Kirkland, and N. D. Browning, 
“Compressive Scanning Transmission Electron Microscopy,” in proceedings of the International 
Conference on Acoustics, Speech, and Signal Processing, Singapore, 2022. 
[2] P. L. Combettes, L. Condat, J-C Pesquet, and B.C Vu, “A forward-backward view of some primal-
dual optimization methods in image recovery,” in proceedings of the International Conference on 
Image Processing, 2014. 
[3] W. Shi, F. Jiang, S. Liu, and D. Zhao, “Scalable convolutional neural network for image compressed 
sensing,” In Proceedings of the IEEE/CVF Conference on CVPR, pp. 12290-12299, 2019. 
[4] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration 
with deep denoiser prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 
pp. 6360-6376, 2021. 
[5] M. Terris, T. Moreau, N. Pustelnik, and J. Tachella, “Equivariant plug-and-play image 
reconstruction,” arXiv preprint arXiv:2312.01831, 2023. 
  



IM-10 - Machine Learning-based processing and Analysis of Microscopy Data 

 
652 

pyEELSMODEL: python library for model-based EELS quantification  

 
Daen Jannis1,2, Mr. Jo Verbeeck1,2 
1EMAT, Universiteit Antwerpen, Antwerpen, Belgium, 2NANOlab, Universiteit Antwerpen, 
Antwerpen, Belgium 

Poster Group 2 

Electron energy loss spectroscopy is a powerful method used to investigate the elemental abundance 
and electronic structure of a material. Extracting this information from the experimental data is a 
complex process and multiple methods exist to get the results where each of them have their own 
advantages and disadvantages. Moreover, each method has free input parameters which influences 
the final results and can lead to experiments bias and reproducibility issues, especially in the 
common case where all parameters and the exact workflow is not shared.  
 
In this work, an open-source python package (pyEELSMODEL) is presented which offers multiple 
alternative EELS quantification methodologies[1] . The library allows a transparent way to share a 
specific data processing workflow from raw data to a resulting plot that can appear in a paper. 
pyEELSMODEL expands upon the former EELSMODEL (c++) software which introduced the model-
based philosophy in the EELS community [2]. This method attempts to describe the experimental 
data with a physical model and optimizes the parameters of this model via a minimization scheme 
such as least squares or maximum likelihood. The values of these optimized parameters can be used 
to estimate information on the material such as eg. elemental abundance. The new pyEELSMODEL 
package is written in python making it, in general, easier to integrate and extend as compared to the 
former c++ code. Multiple robust quantification workflows are available and can be easily used by 
the novice EELS user via eg. Jupyter notebooks.  
This package is also particularly useful for testing and validating novel data processing methodologies  
since its results can easily be benchmarked against more common methodologies and could act as a 
test standard against which to make performance claims. 
 
In this presentation, we will demonstrate the use of pyEELSMODEL on several experimental STEM-
EELS maps showcasing the robustness and speed of the model-based quantification methodology for 
modern large size datasets. In Fig. 1, EELS quantification is used to get elemental maps on a mix of 
copper and silver nanoparticles on top of a carbon substrate. The lower plots show the resulting 
fitted model on silver (a) and copper (b).  
 
Fig 1. Elemental maps of copper and silver nanoparticles on top of a carbon substrate. (a) Shows the 
fitted model on a silver nanoparticle whereas (b) shows a fit on the copper nanoparticle.  
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The tissue microenvironment has emerged as a critical determinant of immune cell function and 
inflammatory disease outcome. However, assessing complex multicellular niches within the intact 
anatomy of a tissue and linking them to cellular in-situ function with the necessary volumetric 
dimension and spatial resolution remains a challenge. Our goal is to develop workflows that enable 
quantitative and functional volumetric imaging of intact tissue compartments during the course of 
inflammation. We use computational reconstruction to correlate the 3D positioning of immune and 
non-immune cells with microanatomical patterns of tissue architecture. In this way, we seek to 
define functional niches and establish comprehensive phenotyping of local environments during the 
onset, progression and resolution of inflammatory disease. 
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Background incl. aims 
Deep learning has revolutionized a wide array of tasks across different domains, including electron 
microscopy (EM) image analysis, by leveraging large labeled datasets for training. However, the 
scarcity of such labeled datasets in EM necessitates the exploration of alternative methods. Self-
supervised learning (SSL) emerges as a promising approach to leverage unlabeled data, featuring 
techniques such as, e.g., masked image modeling (MIM) — which predicts missing parts of the input 
data, as well as contrastive learning — which learns by distinguishing between similar and dissimilar 
pairs of data. This study aims to investigate the impact of these SSL techniques on EM images, 
providing a case study on the effectiveness of leveraging unlabeled data in a domain where labeled 
datasets are limited and expensive to create.  
Methods 
Utilizing the “NFFA dataset”, which comprises 21,169 Scanning EM images across 10 categories, we 
established a baseline by training models from scratch with random weight initialization. We then 
pre-trained models using two SSL approaches: Masked Autoencoders (MAE) for MIM and 
Momentum Contrast V3 (MoCoV3) for contrastive learning, followed by fine-tuning on the NFFA 
dataset. Another pixel-based MIM technique, Multi-level Feature Fusion (MFF), was also tested. The 
performance of each SSL technique was evaluated based on accuracy improvements and 
convergence speeds relative to the baseline. Our analysis highlights the distinctions between MIM 
and contrastive learning approaches in handling EM images. 
Results 
The baseline model yielded an accuracy of 77.42%. Upon employing SSL techniques, significant 
improvements were observed: finetuning with MAE weights achieved an accuracy of 92.84%, MFF 
led to 93.86%, and MoCoV3 led to an accuracy of  92.56%. MFF, in particular, demonstrated a 
superior ability to enhance feature learning from unlabeled data, indicating its impact in the task of 
EM image classification. Furthermore, all SSL-pretrained models showcased accelerated convergence 
rates compared to the baseline. 
Conclusion 
This study confirms the viability and potential of SSL techniques in EM images. MIM, exemplified by 
MFF, outperformed contrastive learning in this domain, suggesting that methods focusing on 
reconstructing or predicting unseen parts of the image are particularly beneficial for EM tasks. The 
results advocate for a targeted selection of SSL strategies based on specific dataset characteristics 
and task requirements, highlighting a path forward for efficient model training in EM image analysis 
and beyond. The influence of SSL pretraining was studied in this research and experiments were 
conducted on SEM image classification. Further research in this direction includes investigating the 
influence of SSL pretraining on dense, pixel-wise classification (i.e., semantic segmentation) tasks in 
EM.  
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Background 
Advances in electron microscopy (EM) of bio-samples now enable ultrastructure to be inspected at 
biologically relevant scales. Capabilities in data analysis have however not kept pace with the 
throughput increase offered by novel acquisition approaches and automation. Moreover, the 
greyscale nature of the electron micrographs complicates a comprehensive analysis of all that is 
hidden within. The analysis of EM datasets is typically based on manual annotations, allowing in-
depth analysis by segmenting the data into biologically meaningful features. However, such 
annotations are laborious and subject to the annotator’s interpretation of the data. Furthermore, 
deep learning can used to automate segmentation but the need for manually annotated ground 
‘truth’ remains. Energy-dispersive X-ray (EDX) imaging, or ColorEM, provides elemental context to 
the recorded ultrastructure, allowing variations in elemental concentrations to be reflected in color 
[1]. In this study we further tailored acquisitions to ColorEM and explored its potential to highlight 
biological features in a data-driven manner. 
 
Methods 
Pancreatic tissue composed of hormone-containing endocrine cells and zymogen-containing exocrine 
cells was epoxy-embedded and subjected to ultramicrotomy. A Thermo Fisher Scientific Talos S/TEM 
equipped with two Bruker XFlash 6-100 EDX detectors was used to interrogate the sectioned sample. 
The spectral richness was promoted by improving the acquisition parameters necessary for 
heterogenous cellular material. Greater context was provided through a mosaic acquisition of a full 
islet of Langerhans. 
 
Results 
ColorEM has been further improved and successfully implemented on pancreatic tissue. The high-
resolution and energy-dispersed recordings allow the ultrastructure of biological tissue to be 
visualized in its elemental context. Various biological features such as heterochromatin, hormone- 
and zymogen-containing granules and lysosomes, can be readily discerned in the elemental images. 
The final large stitched image not only provides elemental context to the ultrastructure, but also 
places this in the larger context of the tissue. 
  
Conclusions 
Here we implement large-scale ColorEM, supplementing the spatial EM data with spectral EDX data. 
We leverage the addition of the spectral dimension to provided elemental context to the recorded 
biological ultrastructure, with the tiled acquisition providing the context of the tissue. Selection of 
which elements to visualize is based on a data-driven approach where the dissimilarity in terms of 
elements, and combinations thereof, amongst the biological features are identified.  
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Background incl. aims 
Accurate reconstruction of nanostructures using focused ion beam (FIB) tomography data is 
challenging due to slicing and imaging artefacts, as well as intensity ambiguities in the scanning 
electron microscope backscattered electron (BSE) images. We propose a multimodal machine 
learning approach that combines intensity information obtained at multiple electron beam 
accelerating voltages (multiV) to improve the three-dimensional (3D) reconstruction of hierarchical 
nanoporous gold (HNPG) structures. The proposed method significantly improves segmentation 
accuracy and leads to more precise 3D reconstructions for real FIB tomography data. 
Methods 
MultiV FIB tomography of epoxy infiltrated HNPG with ligament sizes of 15 nm and 110 nm was 
performed using a Dual Beam FEI Helios NanoLab G3 system and its ASV4 control software for 
automated tomography. During multiV tomography, each slice was imaged using a BSE detector 
three times with accelerating voltages of 1, 2, and 4 kV and a beam current of 50 pA. To compensate 
for drift during the process, 2 fiducial markers were prepared and positioned on the cross-section 
and on top of it. A ruler system was implemented also on top of the cross-section to monitor and 
measure the thickness of each slice. We developed 3 multimodal architectures for 3D nanostructure 
reconstruction with machine learning, employing different data fusion techniques: early fusion, 
intermediate fusion and late fusion. 
Results 
Our results indicate that the late fusion architecture excelled among the three options. Remarkably, 
the intermediate fusion architecture exhibited significantly poorer metrics than the late fusion 
architecture. This drop in performance can be attributed to the large size of the ML model, which 
posed challenges for optimization given a limited amount of training data. However, the effectivity of 
training data may be improved using domain adaptation. In a comparative study, confronting our ML-
multiV method with a cluster-based k-means clustering algorithm and also ML models trained using 
individual single kV datasets, the multiV model outperformed all other segmentation techniques. 
Conclusion 
FIB-SEM tomography data are affected by artifacts and ambiguities in image intensities. These effects 
make it difficult to use cluster-based segmentation methods. More advanced ML-based methods can 
efficiently suppress the effects, even when trained only on a single set of synthetic FIB tomography 
images. The multimodal ML method with a late fusion architecture using multiV imaging data will 
further improve segmentation accuracy. 
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Over the recent years, the comprehension of the formation mechanism of metallic nanoparticles 
(NPs) has greatly benefited from in situ liquid TEM that enables imaging of the nucleation and growth 
of individual NPs in liquid media. However, these experiments pose challenges regarding both data 
acquisition and analysis. In particular, substantial scattering from the liquid around the NPs and the 
electron transparent SiN membranes significantly diminish the signal quality [1]. One solution would 
be to increase the electron dose rate, but this can lead to undesirable effects due to radiolysis. The 
other one is to use post-experiment techniques to remove the noise while keeping the signal of 
interest. Herein, we present an innovative approach that combines deep-learning (DL) and scanning 
transmission electron microscopy kinematic simulations [2] to denoise in situ liquid STEM-movies of 
NPs during their nucleation and growth in liquid media, a complex task where multiple information is 
intertwined. 
Within a commercial liquid cell, we can visualize the formation of gold NPs, induced by the 
interactions between the electron probe and the precursor. We acquired a video of these events 
using a double corrected JEOL ARM 2100. To analyze and understand the growth mechanism, each 
frame was denoised by a homemade convolutional neural network similar to U-Net [3]. However, the 
quality of the results obtained is correlated to the quality of the training data. Hence, numerical 
simulations are a solution in the case of liquid electron microscopy where we cannot acquire data 
experimentally. 
Our work consists of the development and optimization of the dataset and the CNN architecture. 
Besides considering the size and shape dispersions of nanoparticles, kinematic simulations account 
for a significant obstacle in studying NP growth by liquid cell TEM which is the formation of NPs on 
the opposite membrane of the cell. The latter contributes to the random background fluctuations 
because they are imaged way out-focus. Once we considered these challenges, our method 
effectively denoises low and high magnification videos, thus elevating the signal-to-noise ratio from 1 
to 8 [Figure 1], above the threshold value of 5 set by the Rose criterion [4]. Consequently, our 
analysis pipeline facilitates the study of NP growth mechanisms with improved statistics and fewer 
acquisition constraints. We will show the application of this methodology to investigate surface site 
attractiveness on both gold nanocubes and nanorods within the context of NP synthesis. 
In this work, we demonstrate the application of deep learning to the specific case of the denoising of 
in situ liquid microscopy. Thanks to this, we were able to get a better visualization and, thus, a better 
understanding of the mechanisms of the formation of nanoparticles. 
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Background incl. aims 
Transmission electron microscopy (TEM) can provide a wealth of information on structure and 
composition at the atomic level for many different kinds of samples. To obtain this information, 
numerous different imaging, diffraction or spectroscopic techniques are available, e.g., high-angle 
annular dark-field (HAADF) scanning (S)TEM, selected-area electron diffraction (SAED), electron 
energy-loss spectroscopy (EELS) or energy-dispersive X-ray spectroscopy (EDX) to name some of the 
more common ones. To perform an advanced data analysis, again a multitude of dedicated software 
exists, many of them being freely available, such as HyperSpy for multidimensional spectroscopic 
analysis [1] or PETS for analysis of diffraction data [2]. Despite the availability of these specialized 
software, most users, especially those that only occasionally perform TEM analysis, still use 
commercial, proprietary software to perform basic data treatment and the threshold to learn yet 
another, even more specialized software is high. With the aim to speed up my own data processing 
tasks, I have written a software platform based on Matlab that facilitates several basic and advanced 
data analysis processes and which I have made freely available [3].   
 
Methods 
The software is written in Matlab with a graphical user interface (GUI) made up of a main window, a 
figure window for display and several windows to control the data analysis (Figure A). The software 
follows a session-based approach that allows to load and process different TEM data types at the 
same time. The sessions can be stored and reloaded at a later point to continue the data analysis. 
The following list describes several of the tasks that TEMsuite allows to perform: Basic image 
processing (contrast settings, line scans, export images as .jpg or .tif, add a scale bar, …), alignment of 
images series and export to movie, FFT filtering and analysis of reflection spots in the FFT. The 
software possesses a comprehensive set of tools for diffraction analysis including an automatic peak 
detection, fitting and correlation as well as the calculation of radial or azimuthal profiles. EELS 
multidimensional data can be visualized and analyzed statistically (principal-component analysis 
(PCA), non-negative matrix factorization (NNMF)). Core-loss EELS data can be quantified using 
theoretical scattering cross sections and the background-subtracted spectra can be fitted to obtain 
chemical information of the studied specimens.  
 
Results 
Several publications contain results from data analyses conducted with TEMsuite, for example the 
study on quasi-van der Waals epitaxial growth of WS₂ on sapphire [4] or the investigation of 
iron/cobalt-oxide core-shell nanoparticles for catalytic applications [5]. Figure (B) shows the NNMF 
analysis of an EELS spectrum image obtained from the interface between sapphire substrate (left), 
WO₃ interface and WS2 and carbon protection layers. The analysis yielded the clear separation 
between the four contributions and the plasmon peak energies of the associated spectra correspond 
with expected values [4]. The chemical map (Fe: green, Co: blue, O: red) obtained by a spatially-
resolved EELS analysis of an iron/cobalt-oxide core-shell nanoparticle shows the clear formation of a 
Co-rich shell (top left in Figure C) [5]. The Co presence manifests itself as well in the intensity ratio of 
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the O-K pre-peak and the following valley, as visualized in the spectrum and the corresponding map 
(top right) in Figure C. 
 
Conclusion 
I developed the TEMsuite software initially to speed up my own TEM data processing but improved 
its design and setup with the aim to obtain a version that can be used by other users. The software is 
thought as platform for basic and advanced TEM data analysis currently focusing on image, FFT, 
diffraction and mainly EELS analysis and it is planned to be further expanded to include more 
techniques throughout the following years. The software is freely available as source code [3]. 
 
Figure caption: (A) TEMsuite GUI with main window (top left) including the list of loaded image and 
spectroscopy data, figure window (right) with an example EELS-spectrum image quantification and 
the EELS window (bottom left) to control the EELS data analysis. (b) Example analysis of a quasi-van 
der Waals epitaxially grown monolayer of WS₂ by NNMF yielding four contributions of carbon 
protection layer, sapphire substrate, interface (WO₃) and WS₂ monolater. (C) Example analysis of an 
EELS spectrum image of a Fe/Co-oxide core-shell nanoparticle with chemical map (top left), 
comparison of O-K spectra from shell and core (bottom) and map of the intensity ratio between the 
O-K pre-peak at 532 eV and the following valley (top right). 
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Python's widespread adoption is supported by a wide community that has developed an extensive 
toolkit of open-source libraries. Electron microscopy vendors have introduced Application 
Programming Interfaces (APIs) enabling users to design sequences for comprehensive control over 
electron optics, detectors, sample positioning, and data acquisition. [1,2,3] 
These Python-accessible libraries facilitate classical image processing tasks, including object 
detection, drift correction, and feature tracking, which have been pillars of electron microscopy 
scripting for over twenty years. Applications range from Focused Ion Beam (FIB)/Scanning Electron 
Microscopy (SEM) defect analysis and Transmission Electron Microscopy (TEM) lamella preparation 
to semiconductor metrology, with TEM image processing and data analysis being particularly 
prominent. 
The adoption of closed-loop image processing in electron microscopy is driven by the increasing 
volume of multimodal data generated by these instruments. Direct data offloading is inefficient and 
risks post-processing error identification, leading to valuable time losses. 
Recent advancements in machine learning and deep learning have significantly enhanced their 
performance and integration speed, facilitating their inclusion in closed-loop automation sequences 
for complex tasks such as object detection, classification, and feature extraction. 
ThermoFisher Scientific's AutoScript, a cross-platform Python-based API, streamlines and refines 
electron microscopy workflows by harnessing deep learning techniques. This paper highlights two 
applications: 
1. SEM Feature Analysis: Utilizing a Thermo Scientific Helios microscope, this experiment 
automates the creation of binary masks for feature analysis on aluminum powder samples. Instance 
segmentation enables feature separation, counting, and property analysis (e.g., size and shape), 
allowing real-time experimental optimization based on material properties identified by deep 
learning algorithms. 
2. TEM Atom Detection: Demonstrated with a Thermo Scientific Talos F200, this application 
automates the detection of atom positions and diameters in HR-STEM images of SrTiO3. Neural 
networks facilitate rapid atomic structure predictions and interface identification, optimizing imaging 
parameters on-the-fly. 
These cases exemplify the transformative impact of cross-platform, Python-based APIs in electron 
microscopy, showcasing their potential to enhance efficiency, accuracy, and the scope of achievable 
experiments through automation and advanced data analysis. 
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Background incl. aims 
 
In nanomaterials research, the analysis of heterogeneous ensembles of nanocrystals presents a 
significant challenge, often requiring the extraction of information from diverse classes of particles or 
phases, in a process that is often prone to operator bias and poor statistics. Lead Halide Perovskite 
(LHP) nanocrystals (NCs) are a promising class of materials for optoelectronic applications that 
feature a broad compositional flexibility and are often the subject of extensive studies that cover a 
broad parameter space for the synthesis or modification of the basic structures. Here we focus on 
CsPbCl3 NCs where the halide is replaced through exposure to increasing amounts of iodine and 
using STEM-EDX to track ex situ the change in halide [1]. Our primary objective is to extract 
compositional information at the single-particle scale while minimising the electron dose onto the 
sample, a critical consideration to preserve sample integrity and minimise carbon contamination. The 
analysis of nanocrystals poses unique challenges due to their heterogeneous nature and varying 
chemical compositions. To address this gap, our research seeks to leverage the capabilities of TEM 
hyperspectral imaging coupled with machine learning algorithms. The primary objective is twofold: 
first, to develop a robust framework capable of extracting detailed compositional information from 
individual nanocrystals within a large ensemble, and second, to enable high-throughput analysis. 
 
Methods 
The proposed methodology entails the integration of a machine learning-assisted algorithm 
(Segment every grain – SEG [2]  ) within HyperSpy [3] , a versatile environment designed for the 
analysis of hyperspectral datasets. SEG can reliably identify features in STEM micrographs, and the 
algorithm is designed to process datasets with a low signal-to-noise ratio (SNR), mitigating the risk of 
sample damage or alteration. 
The algorithm is designed around modular Python scripts to construct adaptable analysis pipelines. 
These scripts facilitate seamless integration with existing workflows, allowing researchers to tailor 
the analysis to specific datasets or scientific inquiries. The modular nature of the scripts enhances 
flexibility and scalability for samples that produce a very low signal due to their limited thickness or 
beam sensitivity. 
 
Results 
Preliminary results demonstrate the efficacy of the proposed approach in extracting detailed 
compositional information from a population of nanocrystals in sets of STEM hyperspectral datasets. 
A halide replacement effect through a jump-the-gap mechanism is observable as the nanocrystal 
population generally splits into the two populations, with some outlier values that can be studied in 
detail in further work. A study of the lateral size distribution is carried out across all the nanocrystals 
of different chemical compositions of multiple samples, tracking the morphology through chemical 
conversion. Furthermore, a frame-by-frame analysis is employed to study the effect of the electron 
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dose damage on the chemical composition of the nanocrystals, finding similar behaviour for different 
halide species. 
 
Conclusion 
The integration of machine learning with STEM hyperspectral datasets represents a significant 
advancement in nanocrystal analysis. By combining state-of-the-art algorithms with open-source 
platforms and modular scripting, researchers can unlock new insights into the complex world of 
nanomaterials through high-throughput data processing algorithms. This flexible algorithm can be 
customised and developed towards automated in-line analysis in the future. 
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Localised Surface Plasmon Resonance (LSPR) is a non-propagating electron-density wave that is 
confined at the surface of a metallic nanoparticle. They can enhance the electromagnetic radiation, 
concentrating it into sub-wavelength volumes. Its resonance can be tuned by changing the 
surrounding medium and its geometry. This unique property opens a wide range of applications 
across various fields of applied research. 
Electron Energy Loss Spectroscopy (EELS) within a Scanning Transmission Electron Microscope 
(STEM) has revealed remarkable capabilities in the analysis of plasmons at nanometric scale, as this 
technique achieves sub-angstrom spatial resolution and can excite the complete range of LSPR 
modes supported by the nanostructure. By employing EELS, the plasmonic properties can be 
correlated with geometric or structural characteristics, enabling a more comprehensive 
understanding of the plasmonic response.  
In this study, based on the analysis of Silicon/Gold nanopillars samples, we demonstrate that 
clustering techniques can be used for detecting LSPRs in EELS. We propose a novel combination of 
unsupervised machine learning strategies that detect LSPRs in EELS spectrum images. To 
demonstrate the effectivity of this methodology, we studied Si/Au nanopillars. The detection of 
LSPRs is done by reducing the dimensionality of the data, clustering this low-dimensional space, and 
recuperate the spatial space. We demonstrate that using this methodology, it is possible to recover 
the LSPRs, among distinct spectra in a large EELS dataset, and easily make a plasmonic spatial map 
without the need for prior knowledge or labelling of the data. 
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Background incl. aims 
Recently, a mathematical framework called persistent homology (PH) has made it possible to 
quantify materials structural information at a wide range of scales, from the atomic to the nanoscale. 
PH quantitatively expresses the hole structures of data in terms of their number and scale. 
Particularly, it is highly suited for discerning the subtle order within inhomogeneous structures, such 
as amorphous [1] and glass materials [2]. Until now, PH analysis has predominantly focused on three-
dimensional atomic arrangements; however, it is also feasible on two-dimensional image data. Here, 
we applied PH analysis for two-dimensional TEM images, representing a highly useful approach in 
structural analysis. 
In our previous works [3,4], the homological feature known as 'Betti number' was applied for 
structures of self-assembled Pt/CeO₂ nanocomposites, which were captured by scanning TEM 
(STEM). The N-th Betti number corresponds to the number of N-dimensional holes, such as 
connected components, rings (0- and 1-dimensional holes, respectively), and so forth. This 
homological feature could successfully quantify CeO₂ phase connectivity and further, relationship 
with the oxygen ion conductivity. 
To explore more effective descriptor for the nanostructures, we apply one of the most used PH 
methods, Persistent Diagram (PD). The key concept in PD lies in tracking the scale required for the 
appearance (birth, b) and disappearance (death, d) of the N-dimensional holes by continuous 
deformation of object which called ‘filtration’. Consequently, it includes information on the shapes of 
the N-dimensional holes, unlike the Betti number. We aim to demonstrate its effectiveness for nano-
structural analysis and extract important homological feature for classifying the Pt/CeO₂ 
nanostructures. To ensure both quantitativity and interpretability, we employed a consistent 
approach that directly extract interpretable features from PDs. 
 
Method 
Firstly, Pt/CeO₂ nanocomposites were synthesized by the annealing of the Pt₅Ce alloy. The 12 
nanocomposites with various nanostructures were prepared by changing annealing temperature 
(500, 600, and 700℃) and syngas ratio (CO:O2 = 0:1, 1:1, 2:1, and 3:1). The nanostructures were 
characterized through STEM (JEM-2100F, JEOL, Japan) operating at an acceleration voltage of 200 kV. 
Then, the obtained images were binarized and noise-removed with the OpenCV library in Python. The 
sequential procedures related to PD acquisition, vectorization for Principal Component Analysis (PCA) 
were conducted by using data analysis software “Homcloud” [5]. Finally, we used random forest 
method to find the most important descriptor for classifying Pt/CeO₂ nanostructures. 
 
Result 
The binarized STEM images clearly show the self-assembled Pt/CeO₂ nanocomposites that consist of 
Pt (white) and CeO₂ (black) phases. We focused on the CeO₂ phase for PH analysis to examine its 
relationship with oxygen ion conductivity. The nanostructures changed from a maze-like to a striped 
appearance as the annealing temperature increased. Their 0th and 1st PDs also changed depending 
on the structural changes. 
To clarify the relationship between the structural changes and distribution changes of b-d points in 
PDs, we extracted five interpretable features, each based on the understanding of individual 
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quadrants in the 0th and 1st PD. The three features, the average width and total length of the striped 
CeO₂ phases, and the number of CeO₂ phases can be obtained from the 0th PDs. Their trends toward 
annealing temperature coincide with those from the actual STEM images. The number of ring and 
gulf-like structures can be obtained from the 1st PDs, focusing on negative and positive b region, 
respectively. These quantification with PDs could capture trends more clearly compared with 
conventional observation. 
Furthermore, we conducted PCA with vectorized PDs to extract their critical information, which 
emphasizes the difference between homological features in structures. By the first and second 
principal components in the 0th and 1st PDs, the 12 nanostructures were relatively well categorized. 
Through PD reconstruction using the first principal components in the 0th and 1st PDs, we identified 
a critical region in the PDs: the region in the 1st PDs with d value smaller than characteristic size. In 
this critical region, d value corresponds to the size of the CeO₂ gulf-like phases. This result suggests 
that the number of small gulf-like phases is effective as a simple interpretable feature to differentiate 
Pt/CeO₂ nanostructures. Finally, we applied all interpretable features extracted from PDs thus far to a 
random forest classification and evaluated their importance. As a result, two key descriptors 
emerged: the width of the CeO₂ phase and the number of small gulfs. Remarkably, in the scatter plot 
of the two descriptors, the 12 nanostructures could be classified effectively. In this manner, using a 
few simple interpretable descriptors, we can more easily discuss and quantitatively evaluate the 
structural differences arising from variation in synthesis conditions, compared to PCA. 
 
Conclusion 
This study investigated the effectiveness of PH analysis in analyzing the STEM images of the 
nanostructures. Firstly, five interpretable features could be extracted directly from the 0th (the 
average width and total length of the striped CeO₂ phases, and the number of CeO₂ phases) and 1st 
(the number of ring and gulf-like structures of CeO₂ phase) PDs. Regarding the gulf-like structure, the 
PCA results suggest that the number of smaller structures than the characteristic size could 
particularly differentiate the 12 nanostructures. Finally, we showed that key descriptors can classify 
nanostructures through the random forest classification, enabling us to interpret their differences 
easily. 
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Advancements in microscopy techniques have led to the generation of ever-increasing amount of 
data, demanding efficient analysis methods. Image segmentation tools, particularly those powered 
by Artificial Intelligence (AI), have become critical components for processing this data. However, 
segmentation is just the first step in unlocking the wealth of information hidden within these 
complex datasets. Quantitative analysis methodologies are essential for extracting meaningful 
biological insights. 
 
Here delves into the power of AI-driven segmentation for quantitative analysis in electron 
microscopy. We demonstrate the segmentation of a U2OS cell FIB-SEM dataset [1] using a newly 
developed tools within Microscopy Image Browser (MIB) [2].  Our approach leverages the "segment-
anything" model [3] for ground truth generation of training labels alongside a newly developed 2.5D 
deep learning workflow for image segmentation in DeepMIB tool [4] of MIB. This powerful 
combination allows for efficient generation of accurate models for various cellular organelles, 
including mitochondria, endoplasmic reticulum (ER), Golgi apparatus, nuclear envelope, lysosomes, 
and peroxisomes [5]. These models serve as the foundation for in-depth quantitative analysis. 
 
Moving beyond segmentation, we explore potential analysis pathways. A typical pipeline might begin 
with volumetric analysis of organelles, providing valuable information about their size and 
distribution. This analysis can be further extended by developing custom methods to quantify specific 
features relevant to cell biology research. Examples include measuring the density of nuclear pores, 
quantifying the sheet-to-tubule ratio of the ER, or analyzing the contact points between ER and 
mitochondria. 
 
In addition, we showcase the immense potential of large-volume electron microscopy data, 
extending its utility beyond the scope of the original research project. Sharing these datasets 
responsibly is crucial for unlocking their full potential and enabling broader scientific exploration. By 
fostering responsible data sharing practices [5], we can collectively extract even deeper insights from 
these rich datasets, leading to significant advancements in our understanding of cellular biology. 
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Background incl. aims 
Alloying of metal at the nanoscale is often used to enhance nanoparticles' physical/chemical 
properties and engineer new ones leading to multimetallic nanoparticles (NPs) with different 
chemical structures [1]. Access to composition is paramount for a fundamental understanding of 
nanoalloys' chemical and physical properties. In transmission electron microscopy (TEM), particle 
composition can be accessed by spectroscopic techniques such as energy-dispersive X-ray 
spectroscopy (EDX). However, EDX requires a set-up with a high-brightness electron source and wide-
angle detection to collect as much signal as possible. Even then, if we work at atomic resolution, the 
quantification of the composition of atomic columns is possible but limited as there is a lot of noise 
as compared to signal [2]. A promising alternative for quantitative composition determination is 
atomic-resolution high-angle annular dark field scanning TEM (HAADF-STEM) with strong 
compositional sensitivity [3]. In this contribution, we propose an innovative method to quantify the 
composition of individual atomic columns in bimetallic NPs from their intensities in 2D HAADF-STEM 
images using deep learning. 
 
Methods 
In this work, we studied CuAu NPs between 5 and 10 nm synthesized via pulsed laser deposition 
(PLD). The HAADF STEM images were acquired on a double-corrected cold FEG JEOL ARM 200F. 
Elemental composition from individual columns was retrieved from the corresponding HAADF signal 
with regression-based deep learning, U-Net [4]. The network was trained on simulated images, 
obtained with a multislice algorithm, and their corresponding elemental maps. The predicted 
elemental maps were compared to the ground truth STEM EDX profiles to assess the accuracy of our 
methods. 
 
Results 
Multislice simulations show that the aberration-corrected HAADF-STEM intensity of atomic columns 
is influenced by their composition, atomic configuration, and thickness. As these parameters are 
intertwined, a simple regression-based statistical analysis of the local variations of intensity is not 
enough to access the full underlying information. Therefore, we developed a deep learning approach 
with U-Net to be able to disentangle the complex relation of these parameters and predict the 
composition of atomic columns of the whole particle [Figure 1]. We show that for robust prediction 
the training dataset is of paramount importance and it needs to span across all possible 
configurations from the size, and shape, up to the composition and ordering of the atoms. Here, we 
will present the implementation of this method for the study of chemically disordered and ordered 
CuAu NPs. 
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Conclusion 
We have developed a deep-learning approach to predict the composition of bimetallic NPs at the 
atomic columns scale from a single HAADF-STEM image. Our method is adapted to high throughput 
and on-the-fly prediction which is suitable for in situ experiments. One other advantage of this 
method in comparison to EDX is the quantification of the composition without contaminating and 
damaging the NPs. 
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Background 
This work is focused on our recent improvements of 4D-STEM/PNBD method (Four-Dimensional 
Scanning Transmission Electron Microscopy/Powder NanoBeam Diffraction) [1-3], which provides a 
user-friendly way to use a modern SEM as a fast powder electron diffractometer. SEM must be 
equipped with a 2D-array detector of transmitted electrons (pixelated STEM detector). The pixelated 
detector yields standard STEM/BF images in the form of a standard scanning matrix. Moreover, each 
position within the scanning matrix is a 2D nanobeam diffraction pattern, which is captured thanks to 
the 2D-array of pixels within the pixelated detector. In 4D-STEM/PNBD method, the sum of the post-
processed individual diffraction patterns is then used to obtain powder diffractogram. 
The reduction of the 4D-STEM dataset to 2D-powder diffractogram and eventually to its 1D-radially 
averaged profile can be automated by means of our open-source Python packages STEMDIFF and 
EDIFF. The latest available versions support fast parallel processing on multiple cores, user-friendly 
Jupyter notebook interface and independence from any third-party software.  
The current development aims to improve individual diffraction patterns so that even samples 
usually very challenging to study (such as specimens with high amorphous background and low 
diffraction power) can be processed satisfactorily. The 4D-STEM-in-SEM datasets of these difficult 
samples can be quite challenging to process and get the diffraction patterns that could compete with 
the quality of standard TEM/SAED diffractograms. Conventional image enhancement methods have 
failed because they cannot remove the background and noise without affecting the diffraction 
intensities. Therefore, deep learning methods were used to develop a model that would sufficiently 
suppress unwanted image deterioration. In this contribution, we introduce a U-Net Autoencoder (U-
NAE) for noise and background removal in 4D-STEM-in-SEM complex datasets. 
Methods 
As the ideal target 4D-STEM-in-SEM data (clean, noise- and background-free diffractograms) were 
not available, an artificial dataset must have been simulated. The synthetic target data were derived 
from actual datasets of several different crystals (network input data) using multi-scale filtering, 
image transformations, thresholding, and manual corrections (a lengthy and inefficient procedure). 
After collecting the paired dataset (input/target data), each was split into 3 sub-datasets – 60% for 
training, 30% for validation and 10% for testing. Then finally, an architecture of a denoising neural 
network could have been designed. Given the limited dataset, the convolutional U-Net architecture 
was a suitable choice because it can find key features in the data from which it reconstructs the 
desired output. It consists of three parts – encoder (contracting path which captures contextual 
information), bottleneck (low-dimensional representation of the input), and encoder (extending path 
generating a clean image from the bottleneck representation).  
The U-NAE encoding part consists of 3 blocks of convolutional layers that reduce the input image of 
size 256x256x1 to a feature map of size 32x32x64. This bottleneck-representation is then passed 
through the decoding part (3 blocks of convolutional layers which also work with the information 
from the encoder transferred by skip connections and reconstruct the data to its original resolution). 
At the end, there are 3 fully-connected convolutional layers that fine-tune the output.  
The model was trained using ADAM optimizer with mean squared error (MSE) as the criterial 
function. Additional metric to monitor for model performance assessment was mean absolute error 
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(MAE). The validation loss after each epoch was the key score when assessing the network’s learning 
state, as it is indicative of its generalization capabilities and how well it performs on newly introduced 
data. Training data was fed to the network in batches of 32 images, and the learning rate was 
adapting during training as it was designed to gradually decrease when approaching the global 
optimum.  
Results 
During training, the model’s validation MSE dropped from 8135.73 to 25.31, and the MAE from 23.58 
to 2.47. The model with the lowest validation loss was saved to avoid possible overfitting in the final 
training epochs. It was then tested on a test dataset that had not yet been introduced to the network 
and has shown to improve the quality of datasets acquired by our 4D-STEM-in-SEM technique, even 
for the challenging samples. Clear evidence of the functionality of U-NAE is shown in Fig. 1, where 
even for the most primitive method of obtaining a diffractogram (simple summation) the 
improvement in the quality of the output image is clearly visible, as well as the noticeable 
improvement of the radial distributions of the diffractograms. 
Conclusion 
The U-NAE has been proven effective on various challenging datasets, yet limitations arise in 
handling heavy noise levels, potentially leading to unsatisfactory results. Future efforts will prioritize 
optimizing the U-NAE architecture to address these challenges and explore alternative training 
strategies to enhance its performance. Incorporating domain-specific knowledge may further 
broaden its applicability in material science research. In addition, further work to refine the 
simulation of the target data could also improve model performance. 
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Background incl. aims 
Large-scale and volume electron microscopy (EM) allow biologists to understand structural relations 
in biological systems from the nanometer up to the millimeter scale and beyond. However, EM data 
can be difficult and time-consuming to interpret and process due to a lack of biological specificity. 
Fluorescence microscopy (FM) can be used together with EM in correlative light and electron 
microscopy (CLEM) to add biologically relevant data to the EM images. CLEM does come at the cost 
of increased complexity and restrictions in sample preparation and measurement workflow. 
Furthermore, high-throughput EM methods like multi-beam scanning electron microscopy (MB-SEM) 
can be hard to combine with CLEM. We aim to develop a machine-learning model that can extract 
biologically relevant information from EM images, which is generalisable to different methods of EM.  
Methods 
Convolutional neural networks (CNNs) have been shown to perform well on various image-
translation tasks in biomedical contexts. We explored the use of a CNN to extract biological 
information from EM images by imitating real fluorescence. We used a network architecture inspired 
by U-net, only with a truncated up-sampling arm to account for the resolution mismatch between EM 
and FM data. The network, named CLEMnet, was trained on CLEM datasets obtained using an 
integrated array tomography workflow. The dataset consists of rat pancreas tissue samples. The islet 
of Langerhans was stained with Hoechst, which binds DNA and RNA and immunolabeled for insulin 
using Alexa 594.  
In regular EM, it can take a long time to acquire large volumes of EM data. To solve this, high-
throughput EM methods have been developed. One of these methods is multi-beam optical scanning 
transmission electron microscopy (MB-OSTEM). In MB-OSTEM, contrast is generated by the number 
of transmitted electrons. As CLEMnet is only trained on data from one microscope, using only 
backscatter electrons as a detection method, it is not directly applicable to datasets imaged under 
different conditions like with OSTEM. To still be able to use CLEMnet with MB-OSTEM data, we 
propose to transform the MB-OSTEM data such that it appears as backscatter electron (BSE) SEM 
using another CNN. Imaging biological samples using EM introduces beam damage into the sample. 
This makes generating training data for a CNN by sequential imaging in both an SEM and MB-OSTEM 
unviable, as the damage would appear during the second acquisition. Using generative adversarial 
networks (GANs), a network structure called Cycle-GAN can perform image-to-image translation 
tasks without the need for paired training data. We thus trained a Cycle-GAN network to be able to 
transform MB-OSTEM data such that it becomes similar to BSE SEM images, like the ones CLEMnet is 
trained on. This could thus allow for the automatic extraction of biologically relevant data from high-
throughput EM techniques.  
Results 
Network predictions of CLEMnet show a good qualitative agreement with the recorded fluorescence 
signal. By superimposing the recorded and predicted signals, we can see overlap between the 
recorded and predicted signals. The Hoechst signal is localised to nuclei and the endoplasmic 
reticulum. The network trained on the immunolabeled insulin is capable of distinguishing between 
the different types of granules in the sample. Quantitative network performance was evaluated using 
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the Pearson correlation coefficient (PCC). The Hoechst-based network achieved a PCC of 0.51, and 
the Insulin-based network achieved a PCC of 0.765. The PCC serves as an indication of network 
performance. Still, inaccuracies in the recorded dataset, like inaccuracies in the EM-FM registration 
and bleed-through from the different fluorescent stains, can result in a spurious reduction of the 
PCC.  
The OSTEM training data for the Cycle-GAN contains numerous staining artefacts. Despite this, we 
can qualitatively see that Cycle-GAN is able to translate OSTEM data into BSE SEM-like data. 
Furthermore, when CLEMnet trained on the Hoechst dataset is applied to this translated data, we 
can see that the resulting signal is localised to the nuclei and ER as expected.  
Conclusion 
Preliminary results demonstrate our ability to use a CNN trained on BSE SEM data to extract 
biologically relevant data from OSTEM images. Future work will look into extending this to MB-
OSTEM data. In this future work, we will acquire a CLEM dataset using MB-OSTEM to be able to 
quantitatively compare the predicted signal from CLEMnet to real fluorescence data when applied to 
translated MB-OSTEM data. This work could help to make the interpretation and analysis of large-
scale EM data more approachable, as CLEMnet is able to provide biological context to EM datasets. 
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Background and Aims:  
Soft X-ray microscopy within the water window spectral range offers non-destructive imaging 
capabilities with nanometer resolution and a penetration depth of up to 10 µm. This enables the 
investigation of biological samples in a near native state in three dimensions. The interpretation of X-
ray microscopy images of biological cells can be challenging due to the similar absorption 
characteristics of carbon-based structures within these samples. To address this challenge, we have 
developed a contrast enhancement protocol, to improve the interpretability of the acquired images. 
Subsequently, an efficient segmentation technique based on deep learning is deployed for the 
extraction of biologically relevant information from the large amount of data generated by fast 
tomogram acquisition.  
Methods:  
We employed a laboratory-based soft X-ray microscope operating within the water window (500 eV 
photon energy). To enhance the contrast in acquired images, we developed a contrast enhancement 
protocol incorporating an adaptation of the Paganin filter as well as an unsharp masking filter. 
Additionally, we deployed a neural network model utilizing a U-Net architecture for the 
segmentation of THP-1 cell tomograms. This approach leverages the natural higher contrast of lipid 
membranes to facilitate segmentation.  
Results:  
The implementation of the contrast enhancement protocol resulted in improved contrast-to-noise 
ratios, thereby enhancing the interpretability of acquired images. Moreover, the neural network-
based segmentation technique efficiently extracted biologically relevant information from 
tomograms, as confirmed by organelle volume calculations that align with tabular data. This 
segmentation can enable quantitative insights at the subcellular level, including the  location and 
distances between different organelles, as well as their concentrations. 
Conclusions:  
Our study offers a comprehensive approach to soft X-ray microscopy analysis, addressing challenges 
in image interpretation and data segmentation. The developed contrast enhancement protocol and 
segmentation techniques facilitate efficient and accurate investigation of biological samples at the 
sub-cellular level. For the generalization of the segmentation process, increasing both the volume 
and quality of the data, as well as refining sample preparation, is necessary. Nevertheless, our 
advances contribute to analyse soft X-ray microscopy data more efficiently. 
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Background incl. aims 
Volume electron microscopy (vEM) is recognized as a powerful imaging tool capable of providing 
detailed insights into the 3D structure of cells, tissues, and model organisms at the nanometer scale. 
However, the manual segmentation process required for analyzing vEM datasets is time-consuming 
and limits the application and throughput of this technique. In response, this study aims to address 
these limitations by implementing deep learning approaches for automated segmentation based on a 
Panoptic-DeepLab (PDL) architecture. Specifically, the researchers aim to develop an automated 
segmentation workflow using Empanada-Napari plugins for reconstructing airway cells and efferent 
ductules of the male reproductive system in 3D. Furthermore, the study seeks to demonstrate the 
adaptability of these tools for generating tissue and organelle-specific segmentation models trained 
on relatively few 2D images, with the goal of improving efficiency and accuracy. 
Methods 
The researchers employed a deep learning-based approach utilizing the PDL architecture for 
automated segmentation of vEM datasets. Empanada-Napari plugins were developed to facilitate the 
3D reconstruction of airway cells and efferent ductules, originally designed for segmenting 
mitochondria. The segmentation models were trained on a limited number of 2D images, highlighting 
a strategy for achieving robust results with minimal training data. Additionally, custom Python scripts 
were developed to extract cells of interest from the automatically segmented volumes, enabling 
single-cell quantitative analysis. Adapted image analysis methods were utilized to quantify spatial 
relationships between distinct organelles within the cell volume, including identifying points of 
contact on both semantic and instance segmented objects. 
Results 
The study demonstrates the effectiveness of the automated segmentation workflow in accurately 
segmenting airway cells and efferent ductules from vEM datasets. The segmentation models, trained 
on a relatively small number of 2D images, yield exceptional results when compared to human-
validated data. The developed tools enable precise quantitative analyses of cellular metrics such as 
volume, surface area, and number of organelles, enhancing understanding of cellular processes and 
functions. Furthermore, the adapted image analysis methods successfully quantify spatial 
relationships between organelles, providing insights into organelle topology within cells. 
Conclusion 
The automated segmentation workflow and accompanying tools presented in this study represent a 
significant advancement in the analysis of vEM data. By alleviating the laborious process of manual 
segmentation, these tools enhance the efficiency and throughput of vEM imaging, thereby enabling 
comprehensive studies of cellular structures and functions. The adaptability of the segmentation 
models to different tissues and organelles underscores their versatility and potential for widespread 
application in biological research. Overall, the study provides a robust framework for accurate and 
effective quantitative analysis of vEM data, offering unprecedented insights into mammalian cellular 
biology. 
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Background and Aims 
Accurate visualization and quantification of immunohistochemical data is critically important in 
biological applications, particularly when requiring nuance within disease models and paradigms. 
Manual and single threshold methods are prone to bias, inaccuracy and are wholly inefficient over a 
large scale. The increased demand for accurate analysis of high throughput data acquisition becomes 
even more critical when modelling disease as results can influence the development of treatments 
and new therapeutics. Therefore, the aims of this work were to develop a highly accurate pipeline for 
image analysis of xenografted human cells to determine how pathology may develop in Parkinson’s 
disease (PD)  mouse models, utilizing AI-driven machine learning to accomplish these aims. 
Methods 
Immunofluorescent stained mouse tissue grafted with human derived cells were imaged using a 
widefield slide-scanner solution to train a deep neural network (DNN). Individual slides were loaded 
and scanned automatically using a 20x overview  and target cells manually labelled to create initial 
training datasets. Of these datasets, 80% were used to train the DNN and 20% used for internal 
validation. Utilising instance segmentation with the ResNet50/FasteRCNN DNN we generated, this 
first trained iteration was applied over new datasets for automated tissue and cell detection with 
manual approval/quality control checks. Additional training and optimisation of the DNN was applied 
until a level of accuracy and acceptability was reached with low (<5%) errors detected. 
Results 
All grafts within scanned tissue were able to be accurately detected and cells of interest quantified. 
Initial training had accuracy at approximately 84% and required alterations to the scanning 
parameters to ensure high quality input data was used to train and improve the DNN accuracy. The 
developed DNN was additionally able to provide several critical readouts important for the analysis of 
pathophysiology as it relates to xenotransplantation models in PD. Area and size of grafts, migration 
of cells from the injection site, phenotyping and quantification of cells within the graft were able to 
be automatically detected and accurately analysed with the developed DNN. 
Conclusion 
Development of this AI driven microscopy solution for analysis of grafted cells within the brain has 
allowed for greater efficiency, accuracy and decreased bias within this animal model. By developing 
and training the above DNN, we were able to efficiently and accurately provide robust commentary 
on large dataset using a mouse model of human disease, improving our confidence in the results. 
This method could be applied widely to other models and similarly improve the accuracy and 
efficiency of data analysis as it applied to biological questions and potential downstream therapeutic 
development. 
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Background:  
Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet 
image stacks is challenging. Deep learning is a promising method for light-sheet image analysis, but 
only is as good as the training data for this specific dataset.  
 
Methods:  
We realized that virtual reality (VR) is an ideal approach to generate custom deep-learning training 
data. We found that VR-generated training data leads to better model performance, but more 
importantly is also generated much faster. We built DELiVR, a broadly applicable processing pipeline 
to segment arbitrarily labelled cells in light-sheet image stacks of cleared mouse brains.  
We have open-sourced the entire pipeline, docker containers, FIJI plugin, and training data at 
https://discotechnologies.org/DELiVR/ .  
 
Results:  
Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as 
markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially 
accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting 
approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone 
Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to 
other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific 
training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation 
pattern that distinguishes weight-stable cancer from cancers associated with weight loss.  
 
Conclusion: 
Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze 
whole-brain imaging data in health and disease. 
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Background incl. aims 
Biological materials are of spectacular beauty and source of inspiration for principles of material 
design and synthesis. They are composed of a remarkable small number of simple building blocks 
which are often organized, at different length scales, in patches of periodic or quasi periodic units. 
Prominent examples are the cases of trabeculae in bone or skeletal elements of echinoderms, color-
bearing photonics crystals structures in arthropods and pore systems in cuticular materials or bone. 
The structural features (3D texture) and orientation of the periodic/quasiperiodic units largely dictate 
the properties of the materials to which they belong. Yet, segmenting and classifying these regions in 
large 3D datasets --a prerequisite for a complete understanding of the material's properties-- is 
incredibly challenging. In fact, while it is relatively simple to obtain a binarized volume of the 
component these structures are made of (e.g. trabeculae, pores or channels etc...), it is not trivial to 
segment different regions with similar 3D organization and orientation or, even more so, recognize 
and classify those regions that exhibit the same texture but that are differently oriented with respect 
to each other.  
Methods 
To address this, we propose a pipeline that, with minimal supervision and without user bias, extracts, 
classifies and learns, in reciprocal space, 3D textural features from tomographic datasets. The learned 
features can then be used to segment out, in the real space, regions which differ by their structural 
regularity and spatial periodicity. Also, the proposed pipeline allows to easily identify regions of the 
dataset that are equivalent by rotation and quantitatively compare textural properties of different 
datasets. 
Results 
Using this pipeline, we were able to segment large tomographic datasets (in the order of 10¹⁰ voxels) 
of several different biological materials with minimal memory and storage imprint and user 
supervision. As an example, the graphic shows how the pipeline allows an unbiased and automatic 
segmentation of textural features in a sea urchin test plate (µCT dataset 4⋅10⁹ voxels, top), lacuno-
canalicular network in bone (1.8⋅10⁹ voxels, laser scanning confocal microscopy, bottom left) and a 
photonic crystal in weevils scales (FIB/SEM dataset 1.5⋅10⁹ voxels, bottom right). 
A segmentation of about 10⁹ voxels dataset can be run in a few hours on a desktop PC with a small 
GPU (8GB of RAM) and 32 GB RAM. 
Conclusion 
The pipeline presented in this work allows the segmentation of large volumetric datasets that exhibit 
quasi-periodic features and is particularly useful in those cases where the aim of the imaging is to 
establish relationships between the structure and the function of the investigated.  
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Background 
In the field of pharmaceutical research, accurately quantifying imaging data is essential. This 
precision is crucial for assessing neuroinflammation, a key factor in numerous neurological disorders. 
However, powered in vivo studies, especially for pharmacokinetics (PK) and pharmacodynamics (PD) 
evaluations, require utilizing large cohorts of animals. Additionally, recent technological 
advancements have significantly increased the capacity for multiplexing, allowing for more 
comprehensive data collection. This increase in data complexity poses new challenges for analysis.  
 
Methods and Results 
In our current studies investigating neuroinflammation, to manage and analyze the extensive data 
generated, we employ AI-based microscopy analysis. This innovative approach enables automated 
evaluation of drug efficiency in vivo, providing a robust and scalable solution for high-throughput 
studies. Our findings demonstrate the potential of AI-driven methodologies to streamline the analysis 
process, thereby enhancing the accuracy and efficiency of neuroinflammation assessments.  
 
Conclusions 
By integrating these advanced technologies, we pave the way for more in-depth research and faster, 
more precise therapeutic developments. The implications of our work extend beyond 
neuroinflammation, offering a framework for the application of AI in various bioimaging research 
areas. This approach not only improves the reliability of data interpretation but also significantly 
reduces the time and resources required for comprehensive analysis, ultimately accelerating the drug 
development pipeline and improving outcomes for patients. 
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Background 
Accelerated materials development requires integrating automation with Artificial intelligence 
(AI)/Machine learning (ML) based workflows along selection of material composition, production, 
characterization, and testing [1]. Each stage possesses unique possibility of incorporating automation 
and AI/ML models, supporting efficient experimental activities and ultimately computational 
modelling, and reducing time and cost. Materials Acceleration Platforms (MAPs) [2] address these 
possibilities. MAPs concept involves developing the methods for predicting optimal alloy 
compositions, the automation of manufacturing processes, and the implementation of advanced 
materials characterization techniques. Among these, the field of high-throughput characterization 
remains the least developed. 
 
This work focuses on developing protocols for the automated imaging and defect detection in High-
entropy alloys (HEA), through automated SEM imaging and AI/ML based models. The developed 
protocols are then extended to automated fatigue fracture surface analysis of 316L stainless steels 
and the detection of features such as facets, dimples, and striations. 
 
Methods 
Automated imaging was performed with a Zeiss Ultra plus SEM at an accelerating voltage of 15 kV. 
This developed facility allows imaging of random fields of HEA samples at the desired magnification 
using in-house developed code and SmartSEM macro functions. The collected images were 
segmented to identify defects and background information using a DeepLab-v3+ encoder-decoder 
architecture for semantic segmentation. The encoder extracts information from the input image 
through convolutional layers, while the decoder refines the segmentation results, thus capturing fine 
details and improving the localization of object edges. A dataset of 160 images (1024 x 768 pixels 
each) with annotated masks was utilized with 70%, 15%, and 15%, respectively, as training, 
validation, and test sets. 
 
The developed SEM automation and AI/ML protocols in HEAs were subsequently applied to the 
fatigue fracture surfaces of fatigue of 316L stainless steels samples. Rather than inputting random 
fields in the case HEAs, user-defined feature selection from overview images and comprehensive 
fracture surface mapping of 316L stainless steels were utilized. Figure 1 illustrates the method 
employed for automated fracture surface imaging. Additionally, the ML algorithm developed for void 
detection are being refined to identify fatigue fracture surface features. 
 
Results 
With this guided automatic image acquisition, over 1000 images were captured at a rate of ~60 
images per hour using SEM from multiple samples within 24 hours without human intervention. The 
AI/ML model predictions on the collecte data set demonstrated highly accurate segmentation of 
defects in images, with only minor deviations in a few instances, achieving scores of 0.994 for IoU 
(intersection over union) and 0.003 for dice loss, respectively. The predicted masks, generated within 
seconds, provide detailed information about the size, shape, and location of defects in the SEM 
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images, thereby aiding in the analysis and decision-making process for alloy optimization and 
characterization.  
 
Conclusion and outlook 
Integrating automation and AI/ML models facilitates rapid material development by streamlining the 
traditionally tedious workflows required for optimizing material properties. We developed 
techniques for high-entropy alloys (HEAs) and extended them to fracture surface analysis through 
automated SEM image acquisition and feature identification using AI/ML models. This approach 
minimizes human intervention, accelerates analysis, and significantly reduces the costs and time 
associated with these activities. 
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